
Network UPS Tools Developer Guide
i

Network UPS Tools Developer Guide

Network UPS Tools Developer Guide
ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

2.6.0 2011-01-14 First release of AsciiDoc documentation for
Network UPS Tools (NUT).

Network UPS Tools Developer Guide
iii

Contents

1 Introduction 1

2 NUT design document 1

2.1 The layering . 3

2.2 How information gets around . 4

2.2.1 From the equipment . 4

2.2.2 From the driver . 4

2.2.3 From the server . 4

2.3 Instant commands . 4

2.4 Setting variables . 4

2.5 Example data path . 5

2.6 History . 6

3 Information for developers 6

3.1 General stuff - common subdirectory . 6

3.1.1 String handling . 6

3.1.2 Error reporting . 6

3.1.3 Debugging information . 6

3.1.4 Memory allocation . 7

3.1.5 Config file parsing . 7

3.1.6 <time.h> vs. <sys/time.h> . 7

3.2 Device drivers - main.c . 7

3.3 Portability . 7

3.4 Coding style . 8

3.4.1 Indenting with tabs vs. spaces . 8

3.4.2 Line breaks . 8

3.5 Miscellaneous coding style tools . 9

3.5.1 Finishing touches . 9

3.5.2 Spaghetti . 9

3.5.3 Legacy code . 9

3.5.4 Memory leak checking . 10

3.5.5 Conclusion . 10

3.6 Submitting patches . 10

3.7 Patch cohesion . 10

3.8 The completion touch: manual pages and device entry in HCL . 10

3.9 Source code management . 10

3.10 Repository etiquette and quality assurance . 11

3.11 Distributed SCM systems . 11

3.11.1 Git and SVN . 11

3.11.2 Mercurial and SVN . 12

Network UPS Tools Developer Guide
iv

4 Creating a new driver to support another device 12

4.1 Smart vs. Contact-closure . 12

4.2 Serial vs. USB vs. SNMP and more . 12

4.3 Overall concept . 12

4.4 Skeleton driver . 13

4.5 Essential structure . 13

4.5.1 upsdrv_info_t . 13

4.6 Essential functions . 13

4.6.1 upsdrv_initups . 13

4.6.2 upsdrv_initinfo . 13

4.6.3 upsdrv_updateinfo . 14

4.6.4 upsdrv_shutdown . 14

4.7 Data types . 14

4.8 Manipulating the data . 14

4.8.1 Adding variables . 14

4.8.2 Setting flags . 14

4.8.3 Status data . 15

4.9 UPS alarms . 15

4.10 Staleness control . 16

4.11 Serial port handling . 16

4.12 USB port handling . 18

4.12.1 Structure and macro . 19

4.12.2 Function . 19

4.13 Variable names . 19

4.14 Message passing support . 19

4.14.1 SET . 20

4.14.2 INSTCMD . 20

4.14.3 Notes . 20

4.14.4 Responses . 20

4.15 Enumerated types . 20

4.16 Writable strings . 21

4.17 Instant commands . 21

4.18 Delays and ser_* functions . 21

4.19 Canonical input mode processing . 21

4.20 Contact closure hardware information . 21

4.20.1 Definitions . 22

4.20.2 Bad levels . 22

4.20.3 Signals . 22

4.20.4 New genericups types . 22

Network UPS Tools Developer Guide
v

4.20.5 Custom definitions . 23

4.21 How to make a new subdriver to support another USB/HID UPS . 23

4.21.1 Overall concept . 23

4.21.2 HID Usage Tree . 23

4.21.3 Writing a subdriver . 24

4.21.4 Shutting down the UPS . 25

5 Driver/server socket protocol 26

5.1 Formatting . 26

5.2 Commands used by the drivers . 26

5.2.1 SETINFO . 26

5.2.2 DELINFO . 26

5.2.3 ADDENUM . 26

5.2.4 DELENUM . 27

5.2.5 SETAUX . 27

5.2.6 SETFLAGS . 27

5.2.7 ADDCMD . 27

5.2.8 DELCMD . 27

5.2.9 DUMPDONE . 27

5.2.10 PONG . 27

5.2.11 DATAOK . 28

5.2.12 DATASTALE . 28

5.3 Commands sent by the server . 28

5.3.1 PING . 28

5.3.2 INSTCMD . 28

5.3.3 SET . 28

5.3.4 DUMPALL . 28

5.4 Design notes . 29

5.4.1 Requests . 29

5.4.2 Access/Security . 29

5.4.3 Command limitations . 29

5.4.4 Re-establishing communications . 29

6 NUT configuration management with Augeas 29

6.1 Introduction . 29

6.2 Requirements . 29

6.2.1 Augeas . 30

6.2.2 NUT lenses and modules for Augeas . 30

6.3 Create a test sandbox . 30

Network UPS Tools Developer Guide
vi

6.4 Start testing and using . 30

6.4.1 Shell . 30

6.4.2 Python . 32

6.4.3 Perl . 32

6.4.4 Test the conformity testing module . 32

7 Creating new client 32

7.1 C / C++ . 33

7.1.1 Client access library . 33

7.1.2 Configuration helpers . 33

7.2 Python . 33

7.3 Perl . 34

8 Network protocol information 34

8.1 Old command removal notice . 34

8.2 Command reference . 35

8.3 GET . 35

8.3.1 NUMLOGINS . 35

8.3.2 UPSDESC . 35

8.3.3 VAR . 35

8.3.4 TYPE . 36

8.3.5 DESC . 36

8.3.6 CMDDESC . 36

8.4 LIST . 37

8.4.1 UPS . 37

8.4.2 VAR . 37

8.4.3 RW . 38

8.4.4 CMD . 38

8.4.5 ENUM . 38

8.5 SET . 39

8.6 INSTCMD . 39

8.7 LOGOUT . 39

8.8 LOGIN . 39

8.9 MASTER . 40

8.10 FSD . 40

8.11 PASSWORD . 41

8.12 USERNAME . 41

8.13 STARTTLS . 41

8.14 Other commands . 41

Network UPS Tools Developer Guide
vii

8.15 Error responses . 42

8.16 Future ideas . 43

8.16.1 Dense lists . 43

8.16.2 Command status . 43

8.16.3 Get collection . 43

9 NUT developers tools 44

9.1 Device simulation . 44

9.2 Device recording . 44

10 NUT core development and maintenance 44

10.1 NUT-specific autoconf macros . 44

10.2 NUT roadmap and ideas for future expansion . 46

10.2.1 Roadmap . 46

2.6 . 46

2.8 . 46

3.0 . 46

10.2.2 Non-network "upsmon" . 46

10.2.3 Completely unprivileged upsmon . 46

10.2.4 Chrooted upsmon . 47

10.2.5 Monitor program with interpreted language . 47

10.2.6 Sandbox . 47

A NUT command and variable naming scheme 47

A.1 Variables . 48

A.1.1 device: General unit information . 48

A.1.2 ups: General unit information . 48

A.1.3 input: Incoming line/power information . 49

A.1.4 output: Outgoing power/inverter information . 50

A.1.5 Three-phase additions . 50

Phase Count Determination . 50

DOMAINs . 50

Specification (SPEC) . 50

CONTEXT . 50

Valid CONTEXTs . 50

Valid SPECs . 50

A.1.6 EXAMPLES . 51

A.1.7 battery: Any battery details . 51

A.1.8 ambient: Conditions from external probe equipment . 52

A.1.9 outlet: Smart outlet management . 53

A.1.10 driver: Internal driver information . 53

A.1.11 server: Internal server information . 53

A.2 Instant commands . 53

Network UPS Tools Developer Guide
1 / 54

1 Introduction

NUT is both a powerful toolkit and framework that provides support for Power Devices, such as Uninterruptible Power Supplies,
Power Distribution Units and Solar Controllers.

This document intend to describe how NUT is designed, and the way to develop new device drivers and client applications.

2 NUT design document

This software is designed around a layered scheme with drivers, a server and clients. These layers communicate with text-based
protocols for easier maintenance and diagnostics.

Network UPS Tools Developer Guide
2 / 54

Network UPS Tools Developer Guide
3 / 54

2.1 The layering

Network UPS Tools Developer Guide
4 / 54

2.2 How information gets around

2.2.1 From the equipment

DRIVERS talk to the EQUIPMENT and receive updates. For most hardware this is polled (DRIVER asks EQUIPMENT about
a variable), but forced updates are also possible. The exact method is not important, as it is abstracted by the driver.

2.2.2 From the driver

The core of all DRIVERS maintains internal storage for every variable that is known along with the auxiliary data for those
variables. It sends updates to this data to any process which connects to the Unix domain socket.

The DRIVERS will also provide a full atomic copy of their internal knowledge upon receiving the "DUMPALL" command on
the socket. The dump is in the same format as updates, and is followed by "DUMPDONE". When "DUMPDONE" has been
received, the view is complete.

The SERVER will connect to the socket of each DRIVER and will request a dump at that time. It retains this data in local storage
for later use. It continues to listen on the socket for additional updates.

This protocol is documented in sock-protocol.txt.

2.2.3 From the server

The SERVER’s internal storage maintains a complete copy of the data which is in the DRIVER, so it is capable of answering any
request immediately. When a request for data arrives from a CLIENT, the SERVER looks through the internal storage for that
UPS and returns the requested data if it is available.

The format for requests from the CLIENT is documented in protocol.txt.

2.3 Instant commands

Instant commands is the term given to a set of actions that result in something happening to the UPS. Some of the common ones
are test.battery.start to initiate a battery test and test.panel.start to test the front panel of the UPS.

They are passed to the SERVER from a CLIENT using an authenticated network connection. The SERVER first checks to make
sure that the instant command is valid for the DRIVER. If it’s supported, a message is sent via a socket to the DRIVER containing
the command and any auxiliary information.

At this point, there is no confirmation to the SERVER of the command’s execution. This is (still) planned for a future release. This
has been delayed since returning a response involves some potentially interesting timing issues. Remember that upsd services
clients in a round-robin fashion, so all queries must be lightweight and speedy.

2.4 Setting variables

Some variables in the DRIVER or EQUIPMENT can be changed, and carry the FLAG_RW flag. Upon receiving a SET command
from the CLIENT, the SERVER first verifies that it is valid for that DRIVER in terms of writability and data type. If those checks
pass, it then sends the SET command through the socket, much like the instant command design.

The DRIVER is expected to commit the value to the EQUIPMENT and update its internal representation of that variable.

Like the instant commands, there is currently no acknowledgement of the command’s completion from the DRIVER. This, too,
is planned for a future release.

Network UPS Tools Developer Guide
5 / 54

2.5 Example data path

Here’s the path a piece of data might take through this architecture. The event is a UPS going on battery, and the final result is a
pager delivering the alpha message to the admin.

1. EQUIPMENT reports on battery by setting flag in status register

2. DRIVER notices this flag and stores it in the ups.status variable as OB. This update gets pushed out to any listeners via the
sockets.

3. SERVER upsd sees activity on the socket, reads it, parses it, and commits the new data to its local version of the status
variable.

4. CLIENT upsmon does a routine poll of SERVER for "ups.status" and gets "OB".

5. CLIENT upsmon then invokes its NOTIFYCMD which is upssched.

6. upssched starts up a daemon to handle a timer which will expire about 30 seconds into the future.

7. 30 seconds later, the timer expires since the UPS is still on battery, and upssched calls the CMDSCRIPT upssched-cmd.

8. upssched-cmd parses the args and calls sendmail.

9. Avian carriers, smoke signals, SMTP, and some magic result in the message getting from the pager company’s gateway to
a transmitter and then to the admin’s pager.

This scenario requires some configuration, obviously:

1. There’s a UPS driver running. (Whatever applies for the hardware)

2. upsd has a valid UPS entry in ups.conf for this UPS.

[myups]
driver = upsdriver
port = /dev/ttySx

3. upsd has a valid user for upsmon in upsd.users.

[monuser]
password = somepass
upsmon master

4. upsmon is set to monitor this UPS in upsmon.conf.

MONITOR myups@localhost 1 monuser somepass master

5. upsmon is set to EXEC the NOTIFYCMD for the ONBATT condition in upsmon.conf.

NOTIFYFLAG ONBATT EXEC

6. upsmon calls upssched as the NOTIFYCMD in upsmon.conf.

NOTIFYCMD /path/to/upssched

7. upssched has a 30 second timer for ONBATT in upssched.conf.

AT ONBATT * START-TIMER upsonbatt 30

8. upssched calls upssched-cmd as the CMDSCRIPT in upssched.conf.

CMDSCRIPT /path/to/upssched-cmd

9. upssched-cmd knows what to do with "upsonbatt" as its first argument (A quick case..esac construct, see the examples)

Network UPS Tools Developer Guide
6 / 54

2.6 History

The oldest versions of this software (1998) had no separation between the driver and the network server and only supported the
latest APC Smart-UPS hardware as a result. The network protocol used brittle binary structs. This had numerous bad implications
for compatibility and portability.

After the driver and server were separated, data was shared through the state file concept. Status was written into a static array
(the "info array") by drivers, and that array was stored on disk. upsd would periodically read that file into a local copy of that
array.

Shared memory mode was added a bit later, and that removed some of the lag from the status updates. Unfortunately, it didn’t
have any locking originally, and the possibility for corruption due to races existed.

mmap() support was added at some point after that, and became the default. The drivers and upsd would mmap() the file into
memory and read or write from it. Locking was done using the state file as the token, so contention problems were avoided. This
method was relatively quick, but it involved at least 3 copies of the data (driver, disk/mmap, server) and a whole lot of locking
and unlocking. It could occasionally delay the driver or server when waiting for a lock.

In April 2003, the entire state management subsystem was removed and replaced with a single local socket. The drivers listen
for connections and push updates asynchronously to any listeners. They also recognize a few commands. Drivers also dampen
updates, and only push them out when something actually changes.

As a result, upsd no longer has to poll any files on the disk, and can just select() all of its fds and wait for activity. When one of
them is active, it reads the fd and parses the results. Updates from the hardware now get to upsd about as fast as they possibly
can.

Drivers used to call setinfo() to change the local array, and then would call writeinfo() to push the array onto the disk, or into the
mmap/shared memory space. This introduced a lag since many drivers poll quite a few variables during an update.

3 Information for developers

This document is intended to explain some of the more useful things within the tree and provide a standard for working on the
code.

3.1 General stuff - common subdirectory

3.1.1 String handling

Use snprintf. It’s even provided with a compatibility module if the target host doesn’t have it natively.

If you use snprintf to load some value into a buffer, make sure you provide the format string. Don’t use user-provided format
strings, since that’s an easy way to open yourself up to an exploit.

Don’t use strcat. We have a neat wrapper for snprintf called snprintfcat that allows you to append to char * with a format string
and all the usual string length checking of snprintf.

3.1.2 Error reporting

Don’t call syslog() directly. Use upslog_with_errno() and upslogx(). They may write to the syslog, stderr, or both as appropriate.
This means you don’t have to worry about whether you’re running in the background or not.

upslog_with_errno prints your message plus the string expansion of errno. upslogx just prints the message.

fatal_with_errno and fatalx work the same way, but they exit(EXIT_FAILURE) afterwards. Don’t call exit() directly.

3.1.3 Debugging information

upsdebug_with_errno(), upsdebugx() and upsdebug_hex() use the global nut_debug_level so you don’t have to mess around with
printfs yourself. Use them.

Network UPS Tools Developer Guide
7 / 54

3.1.4 Memory allocation

xmalloc, xcalloc, xrealloc and xstrdup all check the results of the base calls before continuing, so you don’t have to. Don’t use
the raw calls directly.

3.1.5 Config file parsing

The configuration parser, called parseconf, is now up to its fourth major version. It has multiple entry points, and can handle
many different jobs. It’s usually used for parsing files, but it can also take input a line at a time or even a character at a time.

You must initialize a context buffer with pconf_init before using any other parseconf function. pconf_encode is the only excep-
tion, since it operates on a buffer you supply and is an auxiliary function.

Escaping special characters and quoting multiple-word elements is all handled by the state machine. Using the same code for all
config files avoids code duplication.

Note
this does not apply to drivers. Driver authors should use the upsdrv_makevartable() scheme to pick up values from ups.conf.
Drivers should not have their own config files.

Drivers may have their own data files, such as lists of hardware, mapping tables, or similar. The difference between a data file
and a config file is that users should never be expected to edit a data file under normal circumstances. This technique might be
used to add more hardware support to a driver without recompiling.

3.1.6 <time.h> vs. <sys/time.h>

This is already handled by autoconf, so just include "timehead.h" and you will get the right headers on every system.

3.2 Device drivers - main.c

The device drivers use main.c as their core. The only exceptions are the HAL-based drivers, which use the same dstate function
calls while integrating with the DBUS event loop.

To write a new driver, you create a file with a series of support functions that will be called by main. These all have names that
start with upsdrv_, and they will be called at different times by main depending on what needs to happen.

See the driver documentation for information on writing drivers, and also refer to the skeletal driver in skel.c.

3.3 Portability

Avoid things that will break on other systems. All the world is not an x86 Linux box.

There are still older systems out there that don’t do C++ style comments.

/* Comments look like this. */
// Not like this.

Newer versions of gcc allow you to declare a variable inside a function somewhat like the way C++ operates, like this:

function do_stuff(void)
{

check_something();

int a;

a = do_something_else();
}

While this will compile and run on these newer versions, it will fail miserably for anyone on an older system. That means you
must not use it. gcc only warns about this with -pedantic.

Network UPS Tools Developer Guide
8 / 54

3.4 Coding style

This is how we do things:

int open_subspace(char *ship, int privacy)
{

if (!privacy)
return insecure_channel(ship);

if (!init_privacy(ship))
fatal_with_errno("Can’t open secure channel");

return secure_channel(ship);
}

The basic idea is that I try to group things into functions, and then find ways to drop out of them when we can’t go any further.
There’s another way to program this involving a big else chunk and a bunch of braces, and it can be hard to follow. You can
read this from top to bottom and have a pretty good idea of what’s going on without having to track too much { } nesting and
indenting.

I don’t really care for pretentiousVariableNamingSchemes, but you can probably get away with it in your own driver that I will
never have to touch. If your function or variable names start pushing important code off the right margin of the screen, expect
them to meet the byte chainsaw sooner or later.

All types defined with typedef should end in "_t", because this is easier to read, and it enables tools (such as indent and emacs)
to display the source code correctly.

3.4.1 Indenting with tabs vs. spaces

Another thing to notice is that the indenting happens with tabs instead of spaces. This lets everyone have their personal tab-width
setting without inflicting much pain on other developers. If you use a space, then you’ve fixed the spacing in stone and have
really annoyed half of the people out there.

If you write something that uses spaces, you may get away with it in a driver that’s relatively secluded. However, if I have to
work on that code, expect it to get reformatted according to the above.

Patches to existing code that don’t conform to the coding style being used in that file will probably be dropped. If it’s something
we really need, it will be grudgingly reformatted before being included.

When in doubt, have a look at Linus’s take on this topic in the Linux kernel - Documentation/CodingStyle. He’s done a far better
job of explaining this.

3.4.2 Line breaks

It is better to have lines that are longer than 80 characters than to wrap lines in random places. This makes it easier to work with
tools such as "grep", and it also lets each developer choose their own window size and tab setting without being stuck to one
particular choice.

Of course, this does not mean that lines should be made unnecessarily long when there is a better alternative (see the note on
pretentiousVariableNamingSchemes above). Certainly there should not be more than one statement per line. Please do not use

if (condition) break;

but use the following:

if (condition) {
break;

}

Network UPS Tools Developer Guide
9 / 54

3.5 Miscellaneous coding style tools

You can go a long way towards converting your source code to the NUT coding style by piping it through the following command:

indent -kr -i8 -T FILE -l1000 -nhnl

This next command does a reasonable job of converting most C++ style comments (but not URLs and DOCTYPE strings):

sed ’s#\(^\|[\t]\)//[\t]*\(.*\)[\t]*#/* \2 */#’

Emacs users can adjust how tabs are displayed. For example, it is possible to set a tab stop to be 3 spaces, rather than the usual
8. (Note that in the saved file, one indentation level will still correspond to one tab stop; the difference is only how the file is
rendered on screen). It is even possible to set this on a per-directory basis, by putting something like this into your .emacs file:

;; NUT style

(defun nut-c-mode ()
"C mode with adjusted defaults for use with the NUT sources."
(interactive)
(c-mode)
(c-set-style "K&R")
(setq c-basic-offset 3) ;; 3 spaces C-indentation
(setq tab-width 3)) ;; 3 spaces per tab

;; apply NUT style to all C source files in all subdirectories of nut/

(setq auto-mode-alist (cons ’(".*/nut/.*\\.[ch]$". nut-c-mode)
auto-mode-alist))

3.5.1 Finishing touches

We like code that uses const and static liberally. If you don’t need to expose a function or global variable to the outside world,
static is your friend. If nobody should edit the contents of some buffer that’s behind a pointer, const keeps them honest.

We always compile with -Wall, so things like const and static help you find implementation flaws. Functions that attempt to
modify a constant or access something outside their scope will throw a warning or even fail to compile in some cases. This is
what we want.

3.5.2 Spaghetti

If you use a goto, expect us to drop it when our head stops spinning. It gives us flashbacks to the very old code we wrote. We’ve
tried to clean up our act, and you should make the effort as well.

We’re not making a blanket statement about gotos, since everything probably has at least one good use. There are a few cases
where a goto is more efficient than any other approach, but you probably won’t encounter them very often in this software.

3.5.3 Legacy code

There are parts of the source tree that do not yet conform to these specs. Part of this is due to the fact that the coding style has
been evolving slightly over the course of the project. Some of the code you see in these directories is 5 years old, and things have
gotten cleaner since then. Don’t worry - it’ll get cleaned up the next time something in the vicinity gets a visit.

Network UPS Tools Developer Guide
10 / 54

3.5.4 Memory leak checking

We can’t say enough good things about valgrind. If you do anything with dynamic memory in your code, you need to use this.
Just compile with -g and start the program inside valgrind. Run it through the suspected area and then exit cleanly. valgrind will
tell you if you’ve done anything dodgy like freeing regions twice, reading uninitialized memory, or if you’ve leaked memory
anywhere.

For more information, refer to the Valgrind project.

3.5.5 Conclusion

The summary: please be kind to our eyes. There’s a lot of stuff in here, and many people have put a lot of time and energy to
improve it.

3.6 Submitting patches

Patches that arrive in unified format (diff -u) as plain text attachments with no HTML and a brief summary at the top are the
easiest to handle.

If a patch is sent to the nut-upsdev mailing list, it stands a better chance of being seen immediately. However, it is likely to be
dropped if any issues cannot be resolved quickly. If your code might not work for others, or if it is a large change, your best bet
is to submit a ticket on Alioth.

This allows us to track the patches over a longer period of time, and it is less likely that a patch will fall through the cracks.
Posting a reminder to the developers (via the nut-upsdev list) about a patch on the tracker is fair game.

3.7 Patch cohesion

Patches should have some kind of unifying element. One patch set is one message, and it should all touch similar things. If you
have to edit 6 files to add support for neutrino detection in UPS hardware, that’s fine.

However, sending one huge patch that does massive separate changes all over the tree is not recommended. That kind of patch
has to be split up and evaluated separately, assuming the core developers care enough to do that instead of just dropping it.

If you have to make big changes in lots of places, send multiple patches - one per item.

3.8 The completion touch: manual pages and device entry in HCL

If you change something that involves an argument to a program or configuration file parsing, the man page is probably now out
of date. If you don’t update it, we have to, and we have enough to do as it is.

If you write a new driver, send in the man page when you send us the source code for your driver. Otherwise, we will be forced
to write a skeletal man page that will probably miss many of the finer points of the driver and hardware.

The same remark goes for device entries: if you add support for new models, remember to also complete the hardware compati-
bility list, present in data/driver.list.in. This will be used to generate both textual, static HTML and dynamic searchable HTML
for the website.

3.9 Source code management

We currently use a Subversion (SVN) repository hosted at Alioth to track changes to the NUT source code. To obtain permission
to commit to the SVN repository, you must be prepared to spend a fair amount of time contributing to the NUT codebase. For
occasional contributions over time, you may wish to investigate one of the distributed SCM tools listed below.

Anonymous SVN checkouts are possible:

svn co svn://svn.debian.org/nut/trunk nut-svn-readonly

If you change a file in the SVN working copy, you can use svn diff to generate a patch to send to the nut-upsdev mailing list.

http://valgrind.kde.org
https://alioth.debian.org/tracker/?atid=411544&group_id=30602&func=browse

Network UPS Tools Developer Guide
11 / 54

3.10 Repository etiquette and quality assurance

Please keep the SVN trunk in working condition at all times. The trunk may be used to generate daily tarballs, and should not
contain broken code if possible. If you need to commit incremental changes that leave the system in a broken state, please do so
in a separate branch and merge the changes back to the trunk once they are complete.

Before committing, please remember to run "make distcheck-light". This checks that the Makefiles are not broken, that all the
relevant files are distributed, and that there are no compilation or installation errors.

Running "make distcheck-light" is especially important if you have added or removed files, or updated configure.in or some
Makefile.am. Remember: simply adding a file to SVN does not mean it will be distributed. To distribute a file, you must update
the corresponding Makefile.am.

There is also "make distcheck", which runs an even stricter set of tests, but will not work unless you have all the optional libraries
and features installed.

3.11 Distributed SCM systems

Git and Mercurial (Hg) are two popular distributed SCM tools which provide a bridge to a SVN repository. This makes it possible
for a new developer to stay synchronized with the latest changes to NUT, while keeping a local version history of their changes
before they are merged by the core NUT developers.

A complete introduction to either Git or Mercurial is beyond the scope of this document, but many others have written excellent
tutorials on both the DSCM tools, and their SVN interfaces.

3.11.1 Git and SVN

The git svn tool synchronizes a Git repository with a SVN repository.

In many cases, NUT developers will not need access to the entire repository history - a snapshot starting at the most recent
revision will work nicely:

git svn clone --revision HEAD svn://svn.debian.org/nut/trunk nut-git

From the resulting nut-git directory, you may use all of the Git commands to record your changes, and even create new branches
for working on different aspects of the code.

Git offers a little more flexibility than the ‘svn update` command. You may fetch other developers’ changes from SVN into your
repository, but hold off on actually combining them with your branch until you have compared the two branches (for instance,
with gitk --all).

To import the new SVN revisions, simply run the following command from any directory under your Git checkout (nut-git in
the example above). Note that this only changes the history stored in your repository - it does not touch your checked-out files.

git svn fetch

Initially, the Git master branch tracks the SVN trunk. The git svn command updates the remotes/trunk reference
every time you run git svn fetch, but it does not adjust the master branch automatically. To update your master branch
with new SVN revisions, you can run the following commands:

git checkout master
git svn fetch # (optional; this gets commits other than on your current branch)
git svn rebase

You may create as many branches as you like in your local Git repository. When using git svn, the preferred way to combine
your changes with SVN changes is to use git rebase on your local branch. This re-applies your branch’s changes to the new
SVN changes, much as though your branch were a series of patches.

http://www.kernel.org/pub/software/scm/git/docs/git-svn.html

Network UPS Tools Developer Guide
12 / 54

git checkout master
git branch my-new-feature
git checkout my-new-feature

Hack away

git add changed-file.c
git commit

Someone committed something to SVN. Fetch it.

git svn fetch
git rebase remotes/trunk

You are encouraged to use git rebase -i on your private Git branches to separate your changes into logical changes.

From there, you can generate patches for the Tracker, or the nut-upsdev list.

If you are new to Git, but are familiar with SVN, the following link may be of use.

3.11.2 Mercurial and SVN

Synchronizing a Mercurial repository against the NUT SVN repository should be similar in spirit to the Git method discussed
above. This wiki page discusses your options.

We would welcome any feedback about this process on the nut-upsdev mailing list.

4 Creating a new driver to support another device

This chapter will present the process to create a new driver to support another device.

Since NUT already supports all major power devices protocols, through several generic drivers (genericups, usbhid-ups, snmp-
ups, blazer_*, . . .), creation of new drivers has become rare.

So most of the time, it will be limited to completing one of these generic driver.

4.1 Smart vs. Contact-closure

If your UPS only does contact closure readings, then go straight to the Contact closure hardware chapter for information on
adding support. It’s a lot easier to add a few lines to a header file than it is to create a whole new driver.

4.2 Serial vs. USB vs. SNMP and more

If your UPS connects to your computer via a USB port, then go straight to the HID subdrivers chapter. You can probably add
support for your device by writing a new subdriver to the existing usbhid-ups driver, which is easier than writing an entire new
driver.

Similarly, if your UPS connects to your computer via an SNMP network card, you can probably add support for your device by
writing a new subdriver to the existing snmp-ups driver.

4.3 Overall concept

The basic design of drivers is simple. main.c handles most of the work for you. You don’t have to worry about arguments, config
files, or anything else like that. Your only concern is talking to the hardware and providing data to the outside world.

http://git-scm.com/course/svn.html
http://mercurial.selenic.com/wiki/WorkingWithSubversion

Network UPS Tools Developer Guide
13 / 54

4.4 Skeleton driver

Familiarize yourself with the design of skel.c in the drivers directory. It shows a few examples of the functions that main will
call to obtain updated information from the hardware.

4.5 Essential structure

4.5.1 upsdrv_info_t

This structure tracks several description information about the driver:

• name: the driver full name, for banner printing.

• version: the driver’s own version. For sub driver information, refer below to sub_upsdrv_info. This value has the form "X.YZ",
and is published by main as "driver.version.internal".

• authors: the driver’s author(s) name. If multiple authors are listed, separate them with a newline character so that it can be
broken up by author if needed.

• status: the driver development status. The following values are allowed:

– DRV_BROKEN: setting this value will cause main to print an error and exit. This is only used during conversions of the
driver core to keep users from using drivers which have not been converted. Drivers in this state will be removed from the
tree after some period if they are not fixed.

– DRV_EXPERIMENTAL: set this value if your driver is potentially broken. This will trigger a warning when it starts so the
user doesn’t take it for granted.

– DRV_BETA: this value means that the driver is more stable and complete. But it is still not recommended for production
systems.

– DRV_STABLE: the driver is suitable for production systems, but not 100 % feature complete.

– DRV_COMPLETE: this is the gold level! It implies that 100 % of the protocol is implemented, and a full QA pass.

• subdrv_info: array of upsdrv_info_t for sub driver(s) information. For example, this is used by usbhid-ups.

This information is currently used for the startup banner printing and tests.

4.6 Essential functions

4.6.1 upsdrv_initups

Open the port (device_path) and do any low-level things that it may need to start using that port. If you have to set DTR or RTS
on a serial port, do it here.

Don’t do any sort of hardware detection here, since you may be going into upsdrv_shutdown next.

4.6.2 upsdrv_initinfo

Try to detect what kind of UPS is out there, if any, assuming that’s possible for your hardware. If there is a way to detect that
hardware and it doesn’t appear to be connected, display an error and exit. This is the last time your driver is allowed to bail out.

This is usually a good place to create variables like ups.mfr, ups.model, ups.serial, and other "one time only" items.

Network UPS Tools Developer Guide
14 / 54

4.6.3 upsdrv_updateinfo

Poll the hardware, and update any variables that you care about monitoring. Use dstate_setinfo() to store the new values.

Do at most one pass of the variables. You MUST return from this function or upsd will be unable to read data from your driver.
main will call this function at regular intervals.

Don’t spent more than a couple of seconds in this function. Typically five (5) seconds is the maximum time allowed before you
risk that the server declares the driver stale. If your UPS hardware requires a timeout period of several seconds before it answers,
consider returning from this function after sending a command immediately and read the answer the next time it is called.

You must never abort from upsdrv_updateinfo(), even when the UPS doesn’t seem to be attached anymore. If the connection
with the UPS is lost, the driver should retry to re-establish communication for as long as it is running. Calling exit() or any of the
fatal*() functions is specifically not allowed anymore.

4.6.4 upsdrv_shutdown

Do whatever you can to make the UPS power off the load but also return after the power comes back on. You may use a different
command that keeps the UPS off if the user has requested that with a configuration setting.

You should attempt the UPS shutdown command even if the UPS detection fails. If the UPS does not shut down the load, then
the user is vulnerable to a race if the power comes back on during the shutdown process.

4.7 Data types

To be of any use, you must supply data in ups.status. That is the minimum needed to let upsmon do its job. Whenever possible,
you should also provide anything else that can be monitored by the driver. Some obvious things are the manufacturer name and
model name, voltage data, and so on.

If you can’t figure out some value automatically, use the ups.conf options to let the user tell you. This can be useful when a driver
needs to support many similar hardware models but can’t probe to see what is actually attached.

4.8 Manipulating the data

All status data lives in structures that are managed by the dstate functions. All access and modifications must happen through
those functions. Any other changes are forbidden, as they will not pushed out as updates to things like upsd.

4.8.1 Adding variables

dstate_setinfo("ups.model", "Mega-Zapper 1500");

Many of these functions take format strings, so you can build the new values right there:

dstate_setinfo("ups.model", "Mega-Zapper %d", rating);

4.8.2 Setting flags

Some variables have special properties. They can be writable, and some are strings. The ST_FLAG_* values can be used to tell
upsd more about what it can do.

dstate_setflags("input.transfer.high", ST_FLAG_RW);

Network UPS Tools Developer Guide
15 / 54

4.8.3 Status data

UPS status flags like on line (OL) and on battery (OB) live in ups.status. Don’t manipulate this by hand. There are functions
which will do this for you.

status_init() - before doing anything else

status_set(val) - add a status word (OB, OL, etc)

status_commit() - push out the update

Possible values for status_set:

OL - On line (mains is present)
OB - On battery (mains is not present)
LB - Low battery
RB - The battery needs to be replaced
CHRG - The battery is charging
DISCHRG - The battery is discharging (inverter is providing load power)
BYPASS - UPS bypass circuit is active - no battery protection is available
CAL - UPS is currently performing runtime calibration (on battery)
OFF - UPS is offline and is not supplying power to the load
OVER - UPS is overloaded
TRIM - UPS is trimming incoming voltage (called "buck" in some hardware)
BOOST - UPS is boosting incoming voltage

Anything else will not be recognized by the usual clients. Coordinate with the nut-upsdev list before creating something new,
since there will be duplication and ugliness otherwise.

Note
upsd injects "FSD" by itself following that command by a master upsmon process. Drivers must not set that value.

Note
the OL and OB flags are an indication of the input line status only.

4.9 UPS alarms

These work like ups.status, and have three special functions which you must use to manage them.

alarm_init() - before doing anything else

alarm_set() - add an alarm word

alarm_commit() - push the value into ups.alarm

Note
the ALARM flag in ups.status is automatically set whenever you use alarm_set. To remove that flag from ups.status, call
alarm_init and alarm_commit without calling alarm_set in the middle.

You should never try to set or unset the ALARM flag manually.

If you use UPS alarms, the call to status_commit() should be after alarm_commit(), otherwise there will be a delay in setting the
ALARM flag in ups.status.

There is no official list of alarm words as of this writing, so don’t use these functions until you check with the upsdev list.

Network UPS Tools Developer Guide
16 / 54

4.10 Staleness control

If you’re not talking to a polled UPS, then you must ensure that it is still out there and is alive before calling dstate_dataok().
Even if nothing is changing, you should still "ping" it or do something else to ensure that it is really available. If the attempts to
contact the UPS fail, you must call dstate_datastale() to inform the server and clients.

• dstate_dataok()

You must call this if polls are succeeding. A good place to call this is the bottom of upsdrv_updateinfo().

• dstate_datastale()

You must call this if your status is unusable. A good technique is to call this before exiting prematurely from upsdrv_updateinfo().

Don’t hide calls to these functions deep inside helper functions. It is very hard to find the origin of staleness warnings, if you call
these from various places in your code. Basically, don’t call them from any other function than from within upsdrv_updateinfo().
There is no need to call either of these regularly as was stated in previous versions of this document (that requirement has long
gone).

4.11 Serial port handling

Drivers which use serial port functions should include serial.h and use these functions whenever possible:

• int ser_open(const char *port)

This opens the port and locks it if possible, using one of fcntl, lockf, or uu_lock depending on what may be available. If something
fails, it calls fatal for you. If it succeeds, it always returns the fd that was opened.

• int ser_set_speed(int fd, const char *port, speed_t speed)

This sets the speed of the port and also does some basic configuring with tcgetattr and tcsetattr. If you have a special serial
configuration (other than 8N1), then this may not be what you want.

The port name is provided again here so failures in tcgetattr() provide a useful error message. This is the only place that will
generate a message if someone passes a non-serial port /dev entry to your driver, so it needs the extra detail.

• int ser_set_dtr(int fd, int state)

• int ser_set_rts(int fd, int state)

These functions can be used to set the modem control lines to provide cable power on the RS232 interface. Use state = 0 to set
the line to 0 and any other value to set it to 1.

• int ser_get_dsr(int fd)

• int ser_get_cts(int fd)

• int ser_get_dcd(int fd)

These functions read the state of the modem control lines. They will return 0 if the line is logic 0 and a non-zero value if the line
is logic 1.

• int ser_close(int fd, const char *port)

This function unlocks the port if possible and closes the fd. You should call this in your upsdrv_cleanup handler.

• int ser_send_char(int fd, char ch)

Network UPS Tools Developer Guide
17 / 54

This attempts to write one character and returns the return value from write. You could call write directly, but using this function
allows for future error handling in one place.

• int ser_send_pace(int fd, unsigned long d_usec, const char *fmt, . . .)

If you need to send a formatted buffer with an intercharacter delay, use this function. There are a number of UPS controllers
which can’t take commands at the full speed that would normally be possible at a given bit rate. Adding a small delay usually
turns a flaky UPS into a solid one.

The return value is the number of characters that was sent to the port, or -1 if something failed.

• int ser_send(int fd, const char *fmt, . . .)

Like ser_send_pace, but without a delay. Only use this if you’re sure that your UPS can handle characters at the full line rate.

• int ser_send_buf(int fd, const char *buf, size_t buflen)

This sends a raw buffer to the fd. It is typically used for binary transmissions. It returns the results of the call to write.

• int ser_send_buf_pace(int fd, unsigned long d_usec, const char *buf, size_t buflen)

This is just ser_send_buf with an intercharacter delay.

• int ser_get_char(int fd, char *ch, long d_sec, long d_usec)

This will wait up to d_sec seconds + d_usec microseconds for one character to arrive, storing it at ch. It returns 1 on success, -1
if something fails and 0 on a timeout.

Note
the delay value must not be too large, or your driver will not get back to the usual idle loop in main in time to answer the PINGs
from upsd. That will cause an oscillation between staleness and normal behavior.

• int ser_get_buf(int fd, char *buf, size_t buflen, long d_sec, long d_usec)

Like ser_get_char, but this one reads up to buflen bytes storing all of them in buf. The buffer is zeroed regardless of success or
failure. It returns the number of bytes read, -1 on failure and 0 on a timeout.

This is essentially a single read() function with a timeout.

• int ser_get_buf_len(int fd, char *buf, size_t buflen, long d_sec, long d_usec)

Like ser_get_buf, but this one waits for buflen bytes to arrive, storing all of them in buf. The buffer is zeroed regardless of success
or failure. It returns the number of bytes read, -1 on failure and 0 on a timeout.

This should only be used for binary reads. See ser_get_line for protocols that are terminated by characters like CR or LF.

• int ser_get_line(int fd, char *buf, size_t buflen, char endchar, const char *ignset, long d_sec, long d_usec)

This is the reading function you should use if your UPS tends to send responses like "OK\r" or "1234\n". It reads up to buflen
bytes and stores them in buf, but it will return immediately if it encounters endchar. The endchar will not be stored in the buffer.
It will also return if it manages to collect a full buffer before reaching the endchar. It returns the number of bytes stored in the
buffer, -1 on failure and 0 on a timeout.

If the character matches the ignset with strchr(), it will not be added to the buffer. If you don’t need to ignore any characters, just
pass it an empty string - "".

The buffer is always cleared and is always null-terminated. It does this by reading at most (buflen - 1) bytes.

Network UPS Tools Developer Guide
18 / 54

Note
any other data which is read after the endchar in the serial buffer will be lost forever. As a result, you should not use this unless
your UPS uses a polled protocol.

Let’s say your endchar is \n and your UPS sends "OK\n1234\nabcd\n". This function will read() all of that, find the first \n, and
stop there. Your driver will get "OK", and the rest is gone forever.

This also means that you should not "pipeline" commands to the UPS. Send a query, then read the response, then send the next
query.

• int ser_get_line_alert(int fd, char *buf, size_t buflen, char endchar, const char *ignset, const char *alertset, void handler(char
ch), long d_sec, long d_usec)

This is just like ser_get_line, but it allows you to specify a set of alert characters which may be received at any time. They are
not added to the buffer, and this function will call your handler function, passing the character as an argument.

Implementation note: this function actually does all of the work, and ser_get_line is just a wrapper that sets an empty alertset
and a NULL handler.

• int ser_flush_in(int fd, const char *ignset, int verbose)

This function will drain the input buffer. If verbose is set to a positive number, then it will announce the characters which have
been read in the syslog. You should not set verbose unless debugging is enabled, since it could be very noisy.

This function returns the number of characters which were read, so you can check for extra bytes by looking for a nonzero return
value. Zero will also be returned if the read fails for some reason.

• int set_flush_io(int fd)

This function drains both the in- and output buffers. Return zero on success.

• void ser_comm_fail(const char *fmt, . . .)

Call this whenever your serial communications fail for some reason. It takes a format string, so you can use variables and other
things to clarify the error. This function does built-in rate-limiting so you can’t spam the syslog.

By default, it will write 10 messages, then it will stop and only write 1 in 100. This allows the driver to keep calling this function
while the problem persists without filling the logs too quickly.

In the old days, drivers would report a failure once, and then would be silent until things were fixed again. Users had to figure
out what was happening by finding that single error message, or by looking at the repeated complaints from upsd or the clients.

If your UPS frequently fails to acknowledge polls and this is a known situation, you should make a couple of attempts before
calling this function.

Note
this does not call dstate_datastale. You still need to do that.

• void ser_comm_good(void)

This will clear the error counter and write a "re-established" message to the syslog after communications have been lost.
Your driver should call this whenever it has successfully contacted the UPS. A good place for most drivers is where it calls
dstate_dataok.

4.12 USB port handling

Drivers which use USB functions should include usb-common.h and use these:

Network UPS Tools Developer Guide
19 / 54

4.12.1 Structure and macro

You should us the usb_device_id structure, and the USB_DEVICE macro to declare the supported devices. This allows the
automatic extraction of USB information, to generate the HAL, Hotplug, udev and DeviceKit-power support files.

For example:

/* SomeVendor name */
#define SOMEVENDOR_VENDORID 0xXXXX

/* USB IDs device table */
static usb_device_id sv_usb_device_table [] = {

/* some models 1 */
{ USB_DEVICE(SOMEVENDOR_VENDORID, 0xYYYY), NULL },
/* various models */
{ USB_DEVICE(SOMEVENDOR_VENDORID, 0xZZZZ), NULL },
{ USB_DEVICE(SOMEVENDOR_VENDORID, 0xAAAA), NULL },
/* Terminating entry */
{ -1, -1, NULL }

};

4.12.2 Function

• is_usb_device_supported(usb_device_id **usb_device_id_list, int dev_VendorID, int dev_ProductID)

Call this in your device opening / matching function. Pass your usb_device_id structure, and a set of VendorID / DeviceID.

This function returns one of the following value:

• NOT_SUPPORTED (0),

• POSSIBLY_SUPPORTED (1, returned when the VendorID is matched, but the DeviceID is unknown),

• or SUPPORTED (2).

For implementation examples, refer to the various USB drivers, and search for the above patterns.

Note
This set of USB helpers is due to expand is the near future. . .

4.13 Variable names

PLEASE don’t make up new variables and commands just because you can. The new dstate functions give us the power to create
just about anything, but that is a privilege and not a right. Imagine the mess that would happen if every developer decided on
their own way to represent a common status element.

Check the NUT command and variable naming scheme section first to find the closest fit. If nothing matches, contact the upsdev
list, and we’ll figure it out.

Patches which introduce unlisted names may be modified or dropped.

4.14 Message passing support

upsd can call drivers to store values in read/write variables and to kick off instant commands. This is how you register handlers
for those events.

The driver core (drivers/main.c) has a structure called upsh. You should populate it with function pointers in your upsdrv_initinfo()
function. Right now, there are only two possibilities:

• setvar = setting UPS variables (SET VAR protocol command)

• instcmd = instant UPS commands (INSTCMD protocol command)

Network UPS Tools Developer Guide
20 / 54

4.14.1 SET

If your driver’s function for handling variable set events is called my_ups_set(), then you’d do this to add the pointer:

upsh.setvar = my_ups_set;

my_ups_set() will receive two parameters:

const char * - the variable being changed
const char * - the new value

You should return either STAT_SET_HANDLED if your driver recognizes the command, or STAT_SET_UNKNOWN if it
doesn’t. Other possibilities will be added at some point in the future.

4.14.2 INSTCMD

This works just like the set process, with slightly different values arriving from the server.

upsh.instcmd = my_ups_cmd;

Your function will receive two args:

const char * - the command name
const char * - (reserved)

You should return either STAT_INSTCMD_HANDLED or STAT_INSTCMD_UNKNOWN depending on whether your driver
can handle the requested command.

4.14.3 Notes

Use strcasecmp. The command names arriving from upsd should be treated without regards to case.

4.14.4 Responses

Drivers will eventually be expected to send responses to commands. Right now, there is no channel to get these back through
upsd to the client, so this is not implemented.

This will probably be implemented with a polling scheme in the clients.

4.15 Enumerated types

If you have a variable that can have several specific values, it is enumerated. You should add each one to make it available to the
client:

dstate_addenum("input.transfer.low", "92");
dstate_addenum("input.transfer.low", "95");
dstate_addenum("input.transfer.low", "99");
dstate_addenum("input.transfer.low", "105");

Network UPS Tools Developer Guide
21 / 54

4.16 Writable strings

Strings that may be changed by the client should have the ST_FLAG_STRING flag set, and a maximum length (in bytes) set in
the auxdata.

dstate_setinfo("ups.id", "Big UPS");
dstate_setflags("ups.id", ST_FLAG_STRING | ST_FLAG_RW);
dstate_setaux("ups.id", 8);

If the variable is not writable, don’t bother with the flags or the auxiliary data. It won’t be used.

4.17 Instant commands

If your hardware and driver can support a command, register it.

dstate_addcmd("load.on");

4.18 Delays and ser_* functions

The new ser_* functions may perform reads faster than the UPS is able to respond in some cases. This means that your driver
will call select() and read() numerous times if your UPS responds in bursts. This also depends on how fast your system is.

You should check your driver with strace or its equivalent on your system. If the driver is calling read() multiple times,
consider adding a call to usleep before going into the ser_read_* call. That will give it a chance to accumulate so you get the
whole thing with one call to read without looping back for more.

This is not a request to save CPU time, even though it may do that. The important part here is making the strace/ktrace output
easier to read.

write(4, "Q1\r", 3) = 3
nanosleep({0, 300000000}, NULL) = 0
select(5, [4], NULL, NULL, {3, 0}) = 1 (in [4], left {3, 0})
read(4, "(120.0 084.0 120.0 0 60.0 22.6"..., 64) = 47

Without that delay, that turns into a mess of selects and reads. The select returns almost instantly, and read gets a tiny chunk of
the data. Add the delay and you get a nice four-line status poll.

4.19 Canonical input mode processing

If your UPS uses "\n" and/or "\r" as endchar, consider the use of Canonical Input Mode Processing instead of the ser_get_line*
functions.

Using a serial port in this mode means that select() will wait until a full line is received (or times out). This relieves you from
waiting between sending a command and reading the reply. Another benefit is, that you no longer have to worry about the case
that your UPS sends "OK\n1234\nabcd\n". This will be broken up cleanly in "OK\n", "1234\n" and "abcd\n" on consecutive
reads, without risk of losing data (which is an often forgotten side effect of the ser_get_line* functions).

Currently, an example how this works can be found in the safenet and upscode2 drivers. The first uses a single "\r" as endchar,
while the latter accepts either "\n", "\n\r" or "\r\n" as line termination. You can define other termination characters as well, but
can’t undefine "\r" and "\n" (so if you need these as data, this is not for you).

4.20 Contact closure hardware information

This is a collection of notes that apply to contact closure UPS hardware, specifically those monitored by the genericups driver.

Network UPS Tools Developer Guide
22 / 54

4.20.1 Definitions

"Contact closure" refers to a situation where one line is connected to another inside UPS hardware to indicate some sort of
situation. These can be relays, or some other form of switching electronics. The generic idea is that you either have a signal on a
line, or you don’t. Think binary.

Usually, the source for a signal is the host PC. It provides a high (logic level 1) from one of its outgoing lines, and the UPS
returns it on one or more lines to communicate. The rest of the time, the UPS either lets it float or connects it to the ground to
indicate a 0.

Other equipment generates the high and low signals internally, and does not require cable power. These signals just appear on
the right lines without any special configuration on the PC side.

4.20.2 Bad levels

Some evil cabling and UPS equipment uses the transmit or receive lines as their reference points for these signals. This is not
sufficient to register as a high signal on many serial ports. If you have problems reading certain signals on your system, make
sure your UPS isn’t trying to do this.

4.20.3 Signals

Unlike their smarter cousins, this kind of UPS can only give you very simple yes/no answers. Due to the limited number of serial
port lines that can be used for this purpose, you typically get two pieces of data:

1. "On line" or "on battery"

2. "Battery OK" or "Low battery"

That’s it. Some equipment actually swaps the second one for a notification about whether the battery needs to be replaced, which
makes life interesting for those users.

Most hardware also supports an outgoing signal from the PC which means "shut down the load immediately". This is generally
implemented in such a way that it only works when running on battery. Most hardware or cabling will ignore the shutdown signal
when running on line power.

4.20.4 New genericups types

If none of the existing types in the genericups driver work completely, make a note of which ones (if any) manage to work
partially. This can save you some work when creating support for your hardware.

Use that information to create a list of where the signals from your UPS appear on the serial port at the PC end, and whether they
are active high or active low. You also need to know what outgoing lines, if any, need to be raised in order to supply power to the
contacts. This is known as cable power. Finally, if your UPS can shut down the load, that line must also be identified.

There are only 4 incoming and 2 outgoing lines, so not many combinations are left. The other lines on a typical 9 pin port are
transmit, receive, and the ground. Anything trying to do a high/low signal on those three is beyond the scope of the genericups
driver. The only exception is an outgoing BREAK, which we already support.

When editing the genericups.h, the values have the following meanings:

Outgoing lines:

• line_norm = what to set to make the line "normal" - i.e. cable power

• line_sd = what to set to make the UPS shut down the load

Incoming lines:

• line_ol = flag that appears for on line / on battery

Network UPS Tools Developer Guide
23 / 54

• val_ol = value of that flag when the UPS is on battery

• line_bl = flag that appears for low battery / battery OK

• val_bl = value of that flag when the battery is low

This may seem a bit confusing to have two variables per value that we want to read, but here’s how it works. If you set line_ol
to TIOCM_RNG, then the value of TIOCM_RNG (0x080 on my box) will be anded with the value of the serial port whenever a
poll occurs. If that flag exists, then the result of the and will be 0x80. If it does not exist, the result will be 0.

So, if line_ol = foo, then val_ol can only be foo or 0.

As a general case, if line_ol == val_ol, then the value you’re reading is active high. Otherwise, it’s active low. Check out the
guts of upsdrv_updateinfo() to see how it really works.

4.20.5 Custom definitions

Late in the 1.3 cycle, a feature was merged which allows you to create custom monitoring settings without editing the model
table. Just set upstype to something close, then use settings in ups.conf to adjust the rest. See the genericups(8) man page for
more details.

4.21 How to make a new subdriver to support another USB/HID UPS

4.21.1 Overall concept

USB (Universal Serial Port) devices can be divided into several different classes (audio, imaging, mass storage etc). Almost all
UPS devices belong to the "HID" class, which means "Human Interface Device", and also includes things like keyboards and
mice. What HID devices have in common is a particular (and very flexible) interface for reading and writing information (such
as x/y coordinates and button states, in case of a mouse, or voltages and status information, in case of a UPS).

The NUT "usbhid-ups" driver is a meta-driver that handles all HID UPS devices. It consists of a core driver that handles most
of the work of talking to the USB hardware, and several sub-drivers to handle specific UPS manufacturers (MGE, APC, and
Belkin are currently supported). Adding support for a new HID UPS device is easy, because it requires only the creation of a
new sub-driver.

There are a few USB UPS devices that are not HID devices. These devices typically implement some version of the manufac-
turer’s serial protocol over USB (which is a really dumb idea, by the way). An example is the Tripplite USB. Such devices are
not supported by the usbhid-ups driver, and are not covered in this document. If you need to add support for such a device, read
new-drivers.txt and see the tripplite_usb driver for inspiration.

4.21.2 HID Usage Tree

From the point of view of writing a HID subdriver, a HID device consists of a bunch of variables. Some variables (such as
the current input voltage) are read-only, whereas other variables (such as the beeper enabled/disabled/muted status) can be read
and written. These variables are usually grouped together and arranged in a hierarchical tree shape, similar to directories in a
file system. This tree is called the "usage" tree. For example, here is part of the usage tree for a typical APC device. Variable
components are separated by ".". Typical values for each variable are also shown for illustrative purposes.

UPS.Battery.Voltage 11.4 V
UPS.Battery.ConfigVoltage12 V
UPS.Input.Voltage 117 V
UPS.Input.ConfigVoltage120 V
UPS.AudibleAlarmControl2 (=enabled)
UPS.PresentStatus.Charging1 (=yes)
UPS.PresentStatus.Discharging0 (=no)
UPS.PresentStatus.ACPresent1 (=yes)

http://www.networkupstools.org/docs/man/genericups.html

Network UPS Tools Developer Guide
24 / 54

As you can see, variables that describe the battery status might be grouped together under "Battery", variables that describe
the input power might be grouped together under "Input", and variables that describe the current UPS status might be grouped
together under "PresentStatus". All of these variables are grouped together under "UPS".

This hierarchical organization of data has the advantage of being very flexible; for example, if some device has more than one
battery, then similar information about each battery could be grouped under "Battery1", "Battery2" and so forth. If your UPS can
also be used as a toaster, then information about the toaster function might be grouped under "Toaster", rather than "UPS".

However, the disadvantage is that each manufacturer will have their own idea about how the usage tree should be organized, and
usbhid-ups needs to know about all of them. This is why manufacturer specific subdrivers are needed.

To make matters more complicated, usage tree components (such as "UPS", "Battery", or "Voltage") are internally represented
not as strings, but as numbers (called "usages" in HID terminology). These numbers are defined in the "HID Usage Tables",
available from http://www.usb.org/developers/hidpage/. The standard usages for UPS devices are defined in a document called
"Usage Tables for HID Power Devices" (the Power Device Class [PDC] specification).

For example:

0x00840010 = UPS
0x00840012 = Battery
0x00840030 = Voltage
0x00840040 = ConfigVoltage
0x0084001a = Input
0x0084005a = AudibleAlarmControl
0x00840002 = PresentStatus
0x00850044 = Charging
0x00850045 = Discharging
0x008500d0 = ACPresent

Thus, the above usage tree is internally represented as:

00840010.00840012.00840030
00840010.00840012.00840040
00840010.0084001a.00840030
00840010.0084001a.00840040
00840010.0084005a
00840010.00840002.00850044
00840010.00840002.00850045
00840010.00840002.008500d0

To make matters worse, most manufacturers define their own additional usages, even in cases where standard usages could
have been used. for example Belkin defines 00860040 = ConfigVoltage (which is incidentally a violation of the USB PDC
specification, as 00860040 is reserved for future use).

Thus, subdrivers generally need to provide:

• manufacturer-specific usage definitions,

• a mapping of HID variables to NUT variables.

Moreover, subdrivers might have to provide additional functionality, such as custom implementations of specific instant com-
mands (load.off, shutdown.restart), and conversions of manufacturer specific data formats.

4.21.3 Writing a subdriver

In preparation for writing a subdriver for a device that is currently unsupported, run usbhid-ups with the following command
line:

drivers/usbhid-ups -DD -u root -x explore -x vendorid=XXXX auto

http://www.usb.org/developers/hidpage/

Network UPS Tools Developer Guide
25 / 54

(substitute your device’s 4-digit VendorID instead of "XXXX"). This will produce a bunch of debugging information, including
a number of lines starting with "Path:" that describe the device’s usage tree. This information forms the initial basis for a new
subdriver.

You should save this information to a file, e.g. drivers/usbhid-ups -DD -u root -x explore -x vendorid=XXXX auto >& /tmp/info

You can create an initial "stub" subdriver for your device by using script scripts/subdriver/path-to-subdriver.sh. Note: this only
creates a "stub" and needs to be futher customized to be useful (see CUSTOMIZATION below).

Use the script as follows:

scripts/subdriver/path-to-subdriver.sh < /tmp/info

where /tmp/info is the file where you previously saved the debugging information.

This script prompts you for a name for the subdriver; use only letters and digits, and use natural capitalization such as "Belkin"
(not "belkin" or "BELKIN"). The script may prompt you for additional information.

You should put the generated files into the drivers/ subdirectory, and update usbhid-ups.c by adding the appropriate #include line
and by updating the definition of subdriver_list in usbhid-ups.c. You must also add the subdriver to USBHID_UPS_SUBDRIVERS
in drivers/Makefile.am and call "autoreconf" and/or "./configure" from the top level NUT directory. You can then recompile
usbhid-ups, and start experimenting with the new subdriver.

CUSTOMIZATION: The initially generated subdriver code is only a stub, and will not implement any useful functionality (in
particular, it will be unable to shut down the UPS). In the beginning, it simply attempts to monitor some UPS variables. To make
this driver useful, you must examine the NUT variables of the form "unmapped.*" in the hid_info_t data structure, and map them
to actual NUT variables and instant commands. There are currently no step-by-step instructions for how to do this. Please look
at the files to see how the currently implemented subdrivers are written.:

• apc-hid.c/h

• belkin-hid.c/h

• cps-hid.c/h

• explore-hid.c/h

• libhid.c/h

• liebert-hid.c/h

• mge-hid.c/h

• powercom-hid.c/h

• tripplite-hid.c/h

4.21.4 Shutting down the UPS

It is desireable to support shutting down the UPS. Usually (for devices that follow the HID Power Device Class specification),
this requires sending the UPS two commands. One for shutting down the UPS (with an offdelay) and one for restarting it
(with an ondelay), where offdelay < ondelay. The two NUT commands for which this is relevant, are shutdown.return and
shutdown.stayoff.

Since the one-to-one mapping above doesn’t allow sending two HID commands to the UPS in response to sending one NUT
command to the driver, this is handled by the driver. In order to make this work, you need to define the following four NUT
values:

ups.delay.start (variable, R/W)
ups.delay.shutdown (variable, R/W)
load.off.delay (command)
load.on.delay (command)

Network UPS Tools Developer Guide
26 / 54

If the UPS supports it, the following variables can be used to show the countdown to start/shutdown:

ups.timer.start (variable, R/O)
ups.timer.shutdown (variable, R/O)

The load.on and load.off commands will be defined implicitly by the driver (using a delay value of 0). Define these
commands yourself, if your UPS requires a different value to switch on/off the load without delay.

Note that the driver expects the load.off.delay and load.on.delay to follow the HID Power Device Class specification,
which means that the load.on.delay command should NOT switch on the load in the absence of mains power. If your
UPS switches on the load regardless of the mains status, DO NOT define this command. You probably want to define the
shutdown.return and/or shutdown.stayoff commands in that case. Commands defined in the subdriver will take
precedence over the ones that are composed in the driver.

When running the driver with the -k flag, it will first attempt to send a shutdown.return command and if that fails, will
fallback to shutdown.reboot.

5 Driver/server socket protocol

Here’s a brief explanation of the text-based protocol which is used between the drivers and server.

The drivers may send things on the socket at any time. They will send out changes to their local storage immediately, without
any sort of prompting from the server. As a result, the server must always check on any driver sockets for activity.

5.1 Formatting

All parsing on either side of the socket is done by parseconf, so the same rules about escaping characters and "quoting multi-word
elements" apply here. Values which may contain odd characters are typically sent through pconf_encode to apply \ characters
where necessary.

The "" construct is used throughout to force a multi-word value to stay together on its way to the other end.

5.2 Commands used by the drivers

5.2.1 SETINFO

SETINFO <varname> "<value>"

SETINFO ups.status "OB LB"

There is no "ADDINFO" - if a given variable does not exist, it is created upon receiving the first SETINFO command.

5.2.2 DELINFO

DELINFO <varname>

DELINFO ups.temperature

5.2.3 ADDENUM

ADDENUM <varname> "<value>"

ADDENUM input.transfer.low "95"

Network UPS Tools Developer Guide
27 / 54

5.2.4 DELENUM

DELENUM <varname> "<value>"

DELENUM input.transfer.low "98"

5.2.5 SETAUX

SETAUX <varname> <numeric value>

SETAUX ups.id 8

This overrides any previous value. The auxiliary value is presently used as a length byte for read-write variables that are strings.

5.2.6 SETFLAGS

SETFLAGS <varname> <flag>...

SETFLAGS ups.id RW STRING

Note that this command takes a variable number of arguments, as multiple flags are supported. Also note that they are not
crammed together in "", since "RW STRING" would mean something completely different.

This also replaces any previous flags for a given variable.

5.2.7 ADDCMD

ADDCMD <cmdname>

ADDCMD load.off

5.2.8 DELCMD

DELCMD <cmdname>

DELCMD load.on

5.2.9 DUMPDONE

DUMPDONE

This is only used to tell the server that every possible item has been transmitted in response to its DUMPALL request. Once this
has been received by the server, it can be sure that it knows everything that the driver does.

5.2.10 PONG

PONG

This is sent in response to a PING from the server. It is only used as a sanity check to make sure that the driver has not gotten
stuck somewhere.

Network UPS Tools Developer Guide
28 / 54

5.2.11 DATAOK

DATAOK

This means that the driver is able to communicate with the UPS, and the data should be treated as usable. It is always sent at the
end of the dump if the data is not stale. It may also be sent at other times.

5.2.12 DATASTALE

DATASTALE

This is sent by the driver to inform any listeners that the data is no longer usable. This usually means that the driver is unable to
get any sort of meaningful response from the UPS. You must not rely on any status information once this has been sent.

This will be sent in the beginning of a dump if the data is stale, and may be repeated. It is cleared by DATAOK.

5.3 Commands sent by the server

5.3.1 PING

PING

This is sent to check on the health of a driver. The server should only send this when it hasn’t heard anything valid from a driver
recently. Some drivers have very little to say in terms of updates, and this may be the only communications they have with the
server on a normal basis.

If a driver does not respond with the PONG within a few seconds at the most, it should be treated as dead/unavailable. Data
stored in the server must not be passed on to the clients when this happens.

5.3.2 INSTCMD

INSTCMD <cmdname>

INSTCMD panel.test.start

5.3.3 SET

SET <varname> "<value>"

SET ups.id "Data room"

5.3.4 DUMPALL

DUMPALL

The server uses this to request a complete copy of everything the driver knows. This is returned in the form of the same commands
(SETINFO, etc.) that would be used if they were being updated normally. As a result, the same parsing happens either way.

The server can tell when it has a full copy of the data by waiting for DUMPDONE. That special response from the driver is sent
once the entire set has been transmitted.

Network UPS Tools Developer Guide
29 / 54

5.4 Design notes

5.4.1 Requests

There is no way to request just one variable. This was done on purpose to limit the complexity of the drivers. Their job is to send
out updates and handle a few simple requests. DUMPALL is provided to give the server a known foundation.

To track a limited set of variables, a server just needs to do DUMPALL, then only have handlers that remember values for the
variables that matter. Anything else should be ignored.

5.4.2 Access/Security

There are no access controls in the drivers. Anything that can connect to their sockets can make requests, including SET and
INSTCMD if supported by the driver and hardware. These sockets must be kept secure. If your operating system does not honor
permissions or modes on sockets, then you must store them in a directory with suitable permissions to limit access.

5.4.3 Command limitations

As parseconf is used to handle decoding and chunking of the data, there are some limits on what may be used. These default to 32
arguments of 512 characters each, which should be more than enough for everything which is currently needed by the software.

These limits are strictly for sanity purposes, and may be raised if necessary. parseconf itself can handle vast numbers of arguments
and characters, with some speed penalty as things get really big.

5.4.4 Re-establishing communications

If the server loses its connection to the driver and later reconnects, it must flush any local storage and start again with DUMPALL.
The driver may have changed the internal state considerably during that time, and anything other approach could leave old
elements behind.

6 NUT configuration management with Augeas

6.1 Introduction

Configuration has long been one of the two main NUT weaknesses. This is mostly due to the framework nature of NUT, and its
many components and features, which make NUT configuration a very complex task.

In order to address this point, NUT now provides configuration tools and manipulation abstraction, to anybody who want to
manipulate NUT configuration, through Augeas lenses and modules.

From Augeas homepage:

"Augeas is a configuration editing tool. It parses configuration files in their native formats and transforms them into a tree.
Configuration changes are made by manipulating this tree and saving it back into native config files."

In other words, Augeas is the dreamed Registry, with all the advantages (such as a uniform interface and tools), and the added
bonus of being free/libre open source software and letting liberty on configuration file format.

6.2 Requirements

To be able to use Augeas with NUT, you will need to install Augeas, and also the NUT provided lenses, which describe NUT
configuration files format.

http://augeas.net

Network UPS Tools Developer Guide
30 / 54

6.2.1 Augeas

Having Augeas installed. You will need at least version 0.5.1 (prior versions may work too, reports are welcome).

As an example, on Debian and derivatives, do the following:

$ apt-get install augeas-lenses augeas-tools

And optionaly:

$ apt-get install libaugeas0 libaugeas-dev python-augeas

On RedHat and derivatives, you have to install the packages augeas and augeas-libs.

6.2.2 NUT lenses and modules for Augeas

These are the *.aug files in the present directory.

You can either install the files to the right location on your system, generally in /usr/share/augeas/lenses/, or use these from NUT
source directory (nut/scripts/augeas). The latter is to be prefered for the time being.

6.3 Create a test sandbox

Note
for now, it’s easier to include an existing /etc/nut/ directory.

$ export AUGEAS_ROOT=./augeas-sandbox
$ mkdir $AUGEAS_ROOT
$ sudo cp -pr /etc/nut $AUGEAS_ROOT
$ sudo chown -R $(id -nu):$(id -ng) $AUGEAS_ROOT

6.4 Start testing and using

Augeas provides many tools and languages bindings (Python, Perl, Java, PHP, Ruby, . . .), still with the same simple logic.

This chapter will only illustrate some of these. Refer to the language binding’s help and Augeas documentation for more
information.

6.4.1 Shell

Start an augeas shell using:

$ augtool -b

Note
if you have not installed NUT lenses, add -I/path/to/nut/scripts/augeas.

From there, you can perform different actions like:

• list existing nut related files:

http://augeas.net
http://augeas.net/download.html
http://augeas.net/docs/index.html

Network UPS Tools Developer Guide
31 / 54

augtool> ls /files/etc/nut/
nut.conf/ = (none)
upsd.users/ = (none)
upsmon.conf = (none)
ups.conf/ = (none)
upsd.conf/ = (none

or using:

augtool> match /files/etc/nut/*
/files/etc/nut/nut.conf = (none)
/files/etc/nut/upsd.users = (none)
/files/etc/nut/upsmon.conf = (none)
/files/etc/nut/ups.conf = (none)
/files/etc/nut/upsd.conf = (none)

Note
if you don’t see anything, you may search for error messages by using:

+ augtool> ls /augeas/files/etc/nut/*/errors and augtool> get /augeas/files/etc/nut/ups.conf/error/message /augeas/files/etc/nut/ups.conf/error/message
= Permission denied

• create a new device entry (in ups.conf), called augtest:

augtool> set /files/etc/nut/ups.conf/augtest/driver dummy-ups
augtool> set /files/etc/nut/ups.conf/augtest/port auto
augtool> save

• list the devices using the usbhid-ups driver:

augtool> match /files/etc/nut/ups.conf/*/driver dummy-ups

C ~

A library is available for C programs, along with pkg-config support.

You can get the compilation and link flags using the following code in your configure script or Makefile:

CFLAGS="‘pkg-config --silence-errors --cflags augeas‘"
LDFLAGS="‘pkg-config --silence-errors --libs augeas‘"

Here is an code sample using this library for NUT configuration:

augeas *a = aug_init(NULL, NULL, AUG_NONE);
ret = aug_match(a, "/files/etc/nut/*", &matches_p);
ret = aug_set(a, "/files/etc/nut/ups.conf/augtest/driver", "dummy-ups");
ret = aug_set(a, "/files/etc/nut/ups.conf/augtest/port", "auto");
ret = aug_save(a);

Network UPS Tools Developer Guide
32 / 54

6.4.2 Python

The augeas class abstracts access to the configuration files.

$ python
Python 2.5.1 (r251:54863, Apr 8 2008, 01:19:33)
[GCC 4.3.0 20080404 (Red Hat 4.3.0-6)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import augeas
>>> a = augeas.augeas()
>>> a.match("/files/etc/nut/*")
[’/files/etc/nut/upsd.users’, ’/files/etc/nut/upsmon.conf’, ’/files/etc/nut/ups.conf’, ’/files/etc/nut/upsd.conf’]
>>> a.set("/files/etc/nut/ups.conf/augtest/driver", "dummy-ups")
True
>>> a.set("/files/etc/nut/ups.conf/augtest/port", "auto")
True
>>> a.save()
True
>>>

$ grep -A 2 augtest /etc/nut/ups.conf
[augtest]
driver=dummy-ups
port=auto

6.4.3 Perl

The Perl binding is available through CPAN and packages.

use Config::Augeas;

my $aug = Config::Augeas->new(root => $aug_root) ;

my @a = $aug->match("/files/etc/nut/*") ;
my $nb = $aug->count_match("/files/etc/nut/*") ;

$aug->set("/files/etc/nut/ups.conf/augtest/driver", "dummy-ups") ;
$aug->set("/files/etc/nut/ups.conf/augtest/port", "auto") ;

$aug->save ;

6.4.4 Test the conformity testing module

Existing configuration files can be tested for conformity. To do so, use:

$ augparse -I ./ ./test_nut.aug

7 Creating new client

NUT provides bindings for several common languages that are presented below. All these are released under the same license as
NUT (the GNU General Public License).

If none of these suits you for technical or legal reasons, you can implement one easily using the Network protocol information.

The latter approach has been used to create the Python PyNUT module, the Nagios check_ups plugin (and probably others),
which can serve as a reference.

Network UPS Tools Developer Guide
33 / 54

7.1 C / C++

7.1.1 Client access library

The upsclient library can be linked into other programs to give access to upsd and UPS status information. Both static and shared
versions are provided.

Clients like upsc are provided as examples of how to retrieve data using the upsclient functions. Other programs not included in
this package may also use this library, such as wmnut.

This library file and the associated header files are not installed by default. You must ./configure --with-lib to enable
building and installing these files. The libraries can then be built and installed with make and make install as usual. This
must be done before building other (non-NUT) programs which depend on them.

For more information, refer to the upsclient(3), manual page and the various upscli_*(3) functions documentation referenced in
the same file.

7.1.2 Configuration helpers

NUT provides helper scripts to ease the configuration step of your program, by detecting the right compilation and link flags:

• one for platforms providing pkg-config,

• and the other (libupsclient-config) for platforms not providing pkg-config.

If you have pkg-config installed, and you need to find the location of the NUT client include files, add the output of the following
command to your build system (which can be combined with other pkg-config invocations):

pkg-config libupsclient --cflags

If you don’t have pkg-config, use this:

libupsclient-config --cflags

Reference: libupsclient-config(1)

7.2 Python

The PyNUT module, contributed by David Goncalves, can be used for connecting a Python script to upsd. Note that this code
(and the accompanying NUT-Monitor application) is licensed under the GPL v3.

The PyNUTClient class abstracts the connection to the server. In order to list the status variables for ups1 on the local upsd,
the following commands could be used:

$ cd scripts/python/module
$ python
...
>>> import PyNUT
>>> from pprint import pprint
>>> client = PyNUT.PyNUTClient()
>>> vars = client.GetUPSVars(’ups1’)
>>> pprint(vars)
{’battery.charge’: ’90’,
’battery.charge.low’: ’30’,
’battery.runtime’: ’3690’,
’battery.voltage’: ’230.0’,

...

http://www.networkupstools.org/projects.html
http://www.networkupstools.org/docs/man/upsclient.html
file:man/index.html#Developer_man
http://www.networkupstools.org/docs/man/libupsclient-config.html

Network UPS Tools Developer Guide
34 / 54

Further examples are given in the test_nutclient.py file. To see the entire API, you can run pydoc from the module
directory.

If you wish to make the module available to everyone on the system, you will probably want to install it in the site-packages
directory for your Python interpreter. (This is usually one of the last items in sys.path.)

7.3 Perl

The old Perl bindings from CPAN have recently been updated and merged into the NUT source code. These operate in a similar
fashion to the Python bindings, with the addition of access to single variables, and additional interpretation of the results. The
Perl class instance encapsulates a single UPS, where the Python class instance represents a connection to the server (which may
service multiple UPS units).

use UPS::Nut;

$ups = new UPS::Nut(NAME => "myups",
HOST => "somemachine.somewhere.com",
PORT => "3493",
USERNAME => "upsuser",
PASSWORD => "upspasswd",
TIMEOUT => 30,
DEBUG => 1,
DEBUGOUT => "/some/file/somewhere",

);
if ($ups->Status() =~ /OB/) {

print "Oh, no! Power failure!\n";
}

tie %other_ups, ’UPS::Nut’,
NAME => "myups",
HOST => "somemachine.somewhere.com",
... # same options as new();

;

print $other_ups{MFR}, " ", $other_ups{MODEL}, "\n";

8 Network protocol information

Since May 2002, this protocol has an official port number from IANA, which is 3493. The old number (3305) was a relic of the
original code’s ancestry, and conflicted with other services. Version 0.50.0 and up use 3493 by default.

This protocol runs over TCP. UDP support was dropped in July 2003. It had been deprecated for some time and was only capable
of the simplest query commands as authentication is impossible over a UDP socket.

A library, named libupsclient, that implement this protocol is provided in both static and shared version to help the client appli-
cation development.

8.1 Old command removal notice

Before version 1.5.0, a number of old commands were supported. These have been removed from the specification. For more
information, consult an older version of the software.

Network UPS Tools Developer Guide
35 / 54

8.2 Command reference

Multi-word elements are contained within "quotes" for easier parsing. Embedded quotes are escaped with backslashes. Embed-
ded backslashes are also escaped by representing them as \\. This protocol is intended to be interpreted with parseconf (NUT
parser) or something similar.

8.3 GET

Retrieve a single response from the server.

Possible sub-commands:

8.3.1 NUMLOGINS

Form:

GET NUMLOGINS <upsname>
GET NUMLOGINS su700

Response:

NUMLOGINS <upsname> <value>
NUMLOGINS su700 1

<value> is the number of clients which have done LOGIN for this UPS. This is used by the master upsmon to determine how
many clients are still connected when starting the shutdown process.

This replaces the old "REQ NUMLOGINS" command.

8.3.2 UPSDESC

Form:

GET UPSDESC <upsname>
GET UPSDESC su700

Response:

UPSDESC <upsname> "<description>"
UPSDESC su700 "Development box"

<description> is the value of "desc=" from ups.conf for this UPS. If it is not set, upsd will return "Unavailable".

This can be used to provide human-readable descriptions instead of a cryptic "upsname@hostname" string.

8.3.3 VAR

Form:

GET VAR <upsname> <varname>
GET VAR su700 ups.status

Response:

VAR <upsname> <varname> "<value>"
VAR su700 ups.status "OL"

This replaces the old "REQ" command.

Network UPS Tools Developer Guide
36 / 54

8.3.4 TYPE

Form:

GET TYPE <upsname> <varname>
GET TYPE su700 input.transfer.low

Response:

TYPE <upsname> <varname> <type>...
TYPE su700 input.transfer.low ENUM

<type> can be several values, and multiple words may be returned:

• RW: this variable may be set to another value with SET

• ENUM: an enumerated type, which supports a few specific values

• STRING:n: this is a string of maximum length n

ENUM and STRING are usually associated with RW, but not always.

This replaces the old "VARTYPE" command.

8.3.5 DESC

Form:

GET DESC <upsname> <varname>
GET DESC su700 ups.status

Response:

DESC <upsname> <varname> "<description>"
DESC su700 ups.status "UPS status"

<description> is a string that gives a brief explanation of the named variable. upsd may return "Unavailable" if the file which
provides this description is not installed.

Different versions of this file may be used in some situations to provide for localization and internationalization.

This replaces the old "VARDESC" command.

8.3.6 CMDDESC

Form:

GET CMDDESC <upsname> <cmdname>
GET CMDDESC su700 load.on

Response:

CMDDESC <upsname> <cmdname> "<description>"
CMDDESC su700 load.on "Turn on the load immediately"

This is like DESC above, but it applies to the instant commands.

This replaces the old "INSTCMDDESC" command.

Network UPS Tools Developer Guide
37 / 54

8.4 LIST

The LIST functions all share a common container format. They will return "BEGIN LIST" and then repeat the initial query. The
list then follows, with as many lines are necessary to convey it. "END LIST" with the initial query attached then follows.

The formatting may seem a bit redundant, but it makes a different form of client possible. You can send a LIST query and then
go off and wait for it to get back to you. When it arrives, you don’t need complicated state machines to remember which list is
which.

8.4.1 UPS

Form:

LIST UPS

Response:

BEGIN LIST UPS
UPS <upsname> "<description>"
...
END LIST UPS

BEGIN LIST UPS
UPS su700 "Development box"
END LIST UPS

<upsname> is a name from ups.conf, and <description> is the value of desc= from ups.conf, if available. It will be set to
"Unavailable" otherwise.

This can be used to determine what values of <upsname> are valid before calling other functions on the server. This is also a
good way to handle situations where a single upsd supports multiple drivers.

Clients which perform a UPS discovery process may find this useful.

8.4.2 VAR

Form:

LIST VAR <upsname>
LIST VAR su700

Response:

BEGIN LIST VAR <upsname>
VAR <upsname> <varname> "<value>"
...
END LIST VAR <upsname>

BEGIN LIST VAR su700
VAR su700 ups.mfr "APC"
VAR su700 ups.mfr.date "10/17/96"
...
END LIST VAR su700

This replaces the old "LISTVARS" command.

Network UPS Tools Developer Guide
38 / 54

8.4.3 RW

Form:

LIST RW <upsname>
LIST RW su700

Response:

BEGIN LIST RW <upsname>
RW <upsname> <varname> "<value>"
...
END LIST RW <upsname>

BEGIN LIST RW su700
RW su700 output.voltage.nominal "115"
RW su700 ups.delay.shutdown "020"
...
END LIST RW su700

This replaces the old "LISTRW" command.

8.4.4 CMD

Form:

LIST CMD <upsname>
LIST CMD su700

Response:

BEGIN LIST CMD <upsname>
CMD <upsname> <cmdname>
...
END LIST CMD <cmdname>

BEGIN LIST CMD su700
CMD su700 load.on
CMD su700 test.panel.start
...
END LIST CMD su700

This replaces the old "LISTINSTCMD" command.

8.4.5 ENUM

Form:

LIST ENUM <upsname> <varname>
LIST ENUM su700 input.transfer.low

Response:

Network UPS Tools Developer Guide
39 / 54

BEGIN LIST ENUM <upsname> <varname>
ENUM <upsname> <varname> "<value>"
...
END LIST ENUM <upsname> <varname>

BEGIN LIST ENUM su700 input.transfer.low
ENUM su700 input.transfer.low "103"
ENUM su700 input.transfer.low "100"
...
END LIST ENUM su700 input.transfer.low

This replaces the old "ENUM" command.

Note
this does not support the old "SELECTED" notation. You must request the current value separately.

8.5 SET

Form:

SET VAR <upsname> <varname> "<value>"
SET VAR su700 ups.id "My UPS"

8.6 INSTCMD

Form:

INSTCMD <upsname> <cmdname>
INSTCMD su700 test.panel.start

8.7 LOGOUT

Form:

LOGOUT

Response:

OK Goodbye (recent versions)
Goodbye... (older versions)

Used to disconnect gracefully from the server.

8.8 LOGIN

Form:

LOGIN <upsname>

Response:

Network UPS Tools Developer Guide
40 / 54

OK (upon success)
or <<np-errors,various errors>>

Note
This requires "upsmon slave" or "upsmon master" in upsd.users

Use this to log the fact that a system is drawing power from this UPS. The upsmon master will wait until the count of attached
systems reaches 1 - itself. This allows the slaves to shut down first.

Note
You probably shouldn’t send this command unless you are upsmon, or a upsmon replacement.

8.9 MASTER

Form:

MASTER <upsname>

Response:

OK (upon success)
or <<np-errors,various errors>>

Note
This requires "upsmon master" in upsd.users

This function doesn’t do much by itself. It is used by upsmon to make sure that master-level functions like FSD are available if
necessary.

8.10 FSD

Form:

FSD <upsname>

Response:

OK FSD-SET (success)
or <<np-errors,various errors>>

Note
This requires "upsmon master" in upsd.users, or "FSD" action granted in upsd.users

upsmon in master mode is the primary user of this function. It sets this "forced shutdown" flag on any UPS when it plans to
power it off. This is done so that slave systems will know about it and shut down before the power disappears.

Setting this flag makes "FSD" appear in a STATUS request for this UPS. Finding "FSD" in a status request should be treated just
like a "OB LB".

It should be noted that FSD is currently a latch - once set, there is no way to clear it short of restarting upsd or dropping then
re-adding it in the ups.conf. This may cause issues when upsd is running on a system that is not shut down due to the UPS event.

Network UPS Tools Developer Guide
41 / 54

8.11 PASSWORD

Form:

PASSWORD <password>

Response:

OK (upon success)
or <<np-errors,various errors>>

Sets the password associated with a connection. Used for later authentication for commands that require it.

8.12 USERNAME

Form:

USERNAME <username>

Response:

OK (upon success)
or <<np-errors,various errors>>

Sets the username associated with a connection. This is also used for authentication, specifically in conjunction with the
upsd.users file.

8.13 STARTTLS

Form:

STARTTLS

Response:

OK STARTTLS
or <<np-errors,various errors>>

This tells upsd to switch to TLS mode internally, so all future communications will be encrypted. You must also change to TLS
mode in the client after receiving the OK, or the connection will be useless.

8.14 Other commands

• HELP: lists the commands supported by this server

• VER: shows the version of the server currently in use

These two are not intended to be used directly by programs. Humans can make use of this program by using telnet or netcat. If you
use telnet, make sure you don’t have it set to negotiate extra options. upsd doesn’t speak telnet and will probably misunderstand
your first request due to the extra junk in the buffer.

Network UPS Tools Developer Guide
42 / 54

8.15 Error responses

An error response has the following format:

ERR <message> [<extra>...]

<message> is always one element; it never contains spaces. This may be used to allow additional information (<extra>) in the
future.

<message> can have the following values:

• ACCESS-DENIED

The client’s host and/or authentication details (username, password) are not sufficient to execute the requested command.

• UNKNOWN-UPS

The UPS specified in the request is not known to upsd. This usually means that it didn’t match anything in ups.conf.

• VAR-NOT-SUPPORTED

The specified UPS doesn’t support the variable in the request.

This is also sent for unrecognized variables which are in a space which is handled by upsd, such as server.*.

• CMD-NOT-SUPPORTED

The specified UPS doesn’t support the instant command in the request.

• INVALID-ARGUMENT

The client sent an argument to a command which is not recognized or is otherwise invalid in this context. This is typically
caused by sending a valid command like GET with an invalid subcommand.

• INSTCMD-FAILED

upsd failed to deliver the instant command request to the driver. No further information is available to the client. This typically
indicates a dead or broken driver.

• SET-FAILED

upsd failed to deliver the set request to the driver. This is just like INSTCMD-FAILED above.

• READONLY

The requested variable in a SET command is not writable.

• TOO-LONG

The requested value in a SET command is too long.

• FEATURE-NOT-SUPPORTED

This instance of upsd does not support the requested feature. This is only used for TLS/SSL mode (STARTTLS) at the moment.

• FEATURE-NOT-CONFIGURED

This instance of upsd hasn’t been configured properly to allow the requested feature to operate. This is also limited to START-
TLS for now.

• ALREADY-SSL-MODE

TLS/SSL mode is already enabled on this connection, so upsd can’t start it again.

• DRIVER-NOT-CONNECTED

upsd can’t perform the requested command, since the driver for that UPS is not connected. This usually means that the driver
is not running, or if it is, the ups.conf is misconfigured.

Network UPS Tools Developer Guide
43 / 54

• DATA-STALE

upsd is connected to the driver for the UPS, but that driver isn’t providing regular updates or has specifically marked the data
as stale. upsd refuses to provide variables on stale units to avoid false readings.

This generally means that the driver is running, but it has lost communications with the hardware. Check the physical connec-
tion to the equipment.

• ALREADY-LOGGED-IN

The client already sent LOGIN for a UPS and can’t do it again. There is presently a limit of one LOGIN record per connection.

• INVALID-PASSWORD

The client sent an invalid PASSWORD - perhaps an empty one.

• ALREADY-SET-PASSWORD

The client already set a PASSWORD and can’t set another. This also should never happen with normal NUT clients.

• INVALID-USERNAME

The client sent an invalid USERNAME.

• ALREADY-SET-USERNAME

The client has already set a USERNAME, and can’t set another. This should never happen with normal NUT clients.

• USERNAME-REQUIRED

The requested command requires a username for authentication, but the client hasn’t set one.

• PASSWORD-REQUIRED

The requested command requires a passname for authentication, but the client hasn’t set one.

• UNKNOWN-COMMAND

upsd doesn’t recognize the requested command.

This can be useful for backwards compatibility with older versions of upsd. Some NUT clients will try GET and fall back on
REQ after receiving this response.

• INVALID-VALUE

The value specified in the request is not valid. This usually applies to a SET of an ENUM type which is using a value which is
not in the list of allowed values.

8.16 Future ideas

8.16.1 Dense lists

The LIST commands may be given the ability to handle options some day. For example, "LIST VARS <ups> +DESC" would
return the current value like now, but it would also append the description of that variable.

8.16.2 Command status

After sending an INSTCMD or SET, a client will eventually be able to poll to see whether it was completed successfully by the
driver.

8.16.3 Get collection

Allow to request only a subtree, which can be a collection, or a sub collection.

Network UPS Tools Developer Guide
44 / 54

9 NUT developers tools

NUT provides several tools for clients and core developers, and QA people.

9.1 Device simulation

The dummy-ups driver propose a simulation mode, also known as Dummy Mode. This mode allows to simulate any kind of
devices, even non existing ones.

Using this method, you can either replay a real life sequence, recorded from an actual device, or directly interact through upsrw
or by editing the device file.

For more information, refer to dummy-ups(8) manual page.

9.2 Device recording

To complete dummy-ups, NUT provides a device recorder script called device-recorder.sh and located in the tools/ directory of
the NUT source tree.

This script uses upsc to record device information, and stores these in a differential fashion every 5 seconds (by default).

Its usage is the following:

Usage: dummy-recorder.sh <device-name> [output-file] [interval]

For example, to record information from the device myups every 10 seconds:

tools/device-recorder.sh myups@localhost myups.seq 10

10 NUT core development and maintenance

This section is intended to people who want to develop new core features, or to do some maintenance.

10.1 NUT-specific autoconf macros

The following NUT-specific autoconf macros are defined in the m4/ directory.

• NUT_TYPE_SOCKLEN_T

• NUT_TYPE_UINT8_T

• NUT_TYPE_UINT16_T

Check for the corresponding type in the system header files, and
#define a replacement if necessary.

• NUT_CHECK_LIBGD

• NUT_CHECK_LIBHAL

• NUT_CHECK_LIBNEON

• NUT_CHECK_LIBNETSNMP

• NUT_CHECK_LIBPOWERMAN

http://www.networkupstools.org/docs/man/dummy-ups.html

Network UPS Tools Developer Guide
45 / 54

• NUT_CHECK_LIBSSL

• NUT_CHECK_LIBUSB

• NUT_CHECK_LIBWRAP

Determine the compiler flags for the corresponding library. On
success, set nut_have_libxxx="yes" and set LIBXXX_CFLAGS and
LIBXXX_LDFLAGS. On failure, set nut_have_libxxx="no". This macro
can be run multiple times, but will do the checking only once.
Here "xxx" should of course be replaced by the respective library name.

The checks for each library grow organically to compensate for
various bugs in the libraries, pkg-config, etc. This is why we have
a separate macro for each library.

• NUT_CHECK_IPV6

Check for various features required to compile the IPv6 support.
dnl Check for various features required for IPv6 support. Define a
preprocessor symbol for each individual feature (HAVE_GETADDRINFO,
HAVE_FREEADDRINFO, HAVE_STRUCT_ADDRINFO, HAVE_SOCKADDR_STORAGE,
SOCKADDR_IN6, IN6_ADDR, HAVE_IN6_IS_ADDR_V4MAPPED,
HAVE_AI_ADDRCONFIG). Also set the shell variable nut_have_ipv6=yes
if all the required features are present. Set nut_have_ipv6=no
otherwise.

• NUT_CHECK_OS

Check for the exact system name and type.
This was only used in the past to determine the packaging rule to be used
through the OS_NAME variable, but may be useful for other purposes in the
future.

• NUT_REPORT_FEATURE(FEATURE, VALUE)

Schedule a line for the end-of-configuration feature summary. The
FEATURE is a descriptive string such that the sentence "Checking
whether to FEATURE" makes sense, and VALUE describes the decision
taken (typically yes or no). The feature is also reported to the
terminal.

• NUT_REPORT(FEATURE, VALUE)

Schedule a line for the end-of-configuration feature summary, without
printing anything to the terminal immediately.

• NUT_PRINT_FEATURE_REPORT

Print out a list of the features that have been reported by
previous NUT_REPORT_FEATURE macro calls.

• NUT_ARG_WITH(FEATURE, DESCRIPTION, DEFAULT)

Declare a simple --with-FEATURE option with the given DESCRIPTION
and DEFAULT. Sets the variable nut_with_FEATURE.

Network UPS Tools Developer Guide
46 / 54

10.2 NUT roadmap and ideas for future expansion

Here are some ideas that have come up over the years but haven’t been implemented yet. This may be a good place to start if
you’re looking for a rainy day hacking project.

10.2.1 Roadmap

2.6

This release is focused on the website and documentation rewrite, using the excellent AsciiDoc.

2.8

This branch will focus on configuration and user interface improvements.

3.0

This major transition will mark the final switch to a complete power device broker.

10.2.2 Non-network "upsmon"

Some systems don’t want a daemon listening to the network. This can be for security reasons, or perhaps because the system has
been squashed down and doesn’t have TCP/IP available. For these situations you could run a driver and program that sits on top
of the driver socket to do local monitoring.

This also makes monitoring extremely easy to automate - you don’t need to worry about usernames, passwords or firewalling.
Just start a driver and drop this program on top of it.

• Parse ups.conf and open the state socket for a driver

• Send DUMPALL and enter a select loop

• Parse SETINFOs that change ups.status

• When you get OB LB, shut down

10.2.3 Completely unprivileged upsmon

upsmon currently retains root in a forked process so it can call the shutdown command. The only reason it needs root on most
systems is that only privileged users can signal init or send a message on /dev/initctl.

In the case of systems running sysvinit (Slackware, others?), upsmon could just open /dev/initctl while it has root and then drop
it completely. When it’s time to shut down, fire a control structure at init across the lingering socket and tell it to enter runlevel 0.

This has been shown to work in local tests, but it’s not portable. It could only be offered as an option for those systems which
run that flavor of init. It also needs to be tested to see what happens to the lingering fd over time, such as when init restarts after
an upgrade.

For other systems, there is always the possibility of having a suid program which does nothing but prod init into starting a
shutdown. Lock down the group access so only upsmon’s unprivileged user can access it, and make that your SHUTDOWNCMD.
Then it could drop root completely.

http://www.methods.co.nz/asciidoc

Network UPS Tools Developer Guide
47 / 54

10.2.4 Chrooted upsmon

upsmon could run the network monitoring part in a chroot jail if it had a pipe to another process running outside for NOTIFY
dispatches. Such a pipe would have to be constructed extremely carefully so an attacker could not compromise it from the jailed
process.

A state machine with a tightly defined sequence could do this safely. All it has to do is dispatch the UPS name and event type.

[start] [type] [length] <name> [stop]

10.2.5 Monitor program with interpreted language

Once in awhile, I get requests for a way to shut down based on the UPS temperature, or ambient humidity, or at a certain battery
charge level, or any number of things other than an "OB LB" status. It should be obvious that adding a way to monitor all of that
in upsmon would bloat upsmon for all those people who really don’t need anything like that.

A separate program that interprets a list of rules and uses it to monitor the UPS equipment is the way to solve this. If you have a
condition that needs to be tested, add a rule.

Some of the tools that such a language would need include simple greater-than/less-than testing (if battery.charge < 20), equiva-
lence testing (if ups.model = "SMART-UPS 700"), and some way to set and clear timers.

Due to the expected size and limited audience for such a program, it might have to be distributed separately.

Note
Python may be a good candidate.

10.2.6 Sandbox

• check to refresh and integrate the tasks list and feature requests list from Alioth

• add "Generic ?Ascii? driver": I’ve got to think more about that, but the recent solar panel driver, and the powerman inter-
nal approach of a generic engine with a scripting interface is a cool idea. Ref http://powerman.svn.sourceforge.net/viewvc/-
powerman/trunk/etc/apcpdu.dev?revision=969&view=markup

• integrate the (future) new powerman LUA engine (maybe/mustbe used for the driver above?) for native PDU support

• see how we can help and collaborate with DeviceKit-power

A NUT command and variable naming scheme

This is a dump of the standard variables and command names used in NUT. Don’t use a name with any of the dstate functions
unless it exists here.

If you need a new variable or command name, contact the Development Team first.

Put another way: if you make up a name that’s not in this list and it gets into the tree, and then we come up with a better name
later, clients that use the undocumented variable will break when it is changed.

Note
"opaque" means programs should not attempt to parse the value for that variable as it may vary greatly from one UPS to the
next. These strings are best handled directly by the user.

https://alioth.debian.org/pm/?group_id=30602
https://alioth.debian.org/tracker/?atid=411545&group_id=30602&func=browse
http://powerman.svn.sourceforge.net/viewvc/powerman/trunk/etc/apcpdu.dev?revision=969&view=markup
http://powerman.svn.sourceforge.net/viewvc/powerman/trunk/etc/apcpdu.dev?revision=969&view=markup

Network UPS Tools Developer Guide
48 / 54

A.1 Variables

A.1.1 device: General unit information

Note
these data will be redundant with some ups.* information during a transition period. The ups.* data will then be removed.

Name Description Example value
device.model Device model BladeUPS
device.mfr Device manufacturer Eaton
device.serial Device serial number (opaque string) WS9643050926
device.type Device type (ups, pdu, scd) ups

A.1.2 ups: General unit information

Name Description Example value
ups.status UPS status OL
ups.alarm UPS alarms OVERHEAT
ups.time Internal UPS clock time (opaque

string)
12:34

ups.date Internal UPS clock date (opaque
string)

01-02-03

ups.model UPS model SMART-UPS 700
ups.mfr UPS manufacturer APC
ups.mfr.date UPS manufacturing date (opaque

string)
10/17/96

ups.serial UPS serial number (opaque string) WS9643050926
ups.vendorid Vendor ID for USB devices 0463
ups.productid Product ID for USB devices 0001
ups.firmware UPS firmware (opaque string) 50.9.D
ups.firmware.aux Auxiliary device firmware 4Kx
ups.temperature UPS temperature (degrees C) 042.7
ups.load Load on UPS (percent) 023.4
ups.load.high Load when UPS switches to overload

condition ("OVER") (percent)
100

ups.id UPS system identifier (opaque string) Sierra
ups.delay.start Interval to wait before restarting the

load (seconds)
0

ups.delay.reboot Interval to wait before rebooting the
UPS (seconds)

60

ups.delay.shutdown Interval to wait after shutdown with
delay command (seconds)

20

ups.timer.start Time before the load will be started
(seconds)

30

ups.timer.reboot Time before the load will be rebooted
(seconds)

10

ups.timer.shutdown Time before the load will be shutdown
(seconds)

20

ups.test.interval Interval between self tests (seconds) 1209600 (two weeks)
ups.test.result Results of last self test (opaque string) Bad battery pack
ups.display.language Language to use on front panel (*

opaque)
E

Network UPS Tools Developer Guide
49 / 54

Name Description Example value
ups.contacts UPS external contact sensors (*

opaque)
F0

ups.efficiency Efficiency of the UPS (ratio of the
output current on the input current)
(percent)

95

ups.power Current value of apparent power
(Volt-Amps)

500

ups.power.nominal Nominal value of apparent power
(Volt-Amps)

500

ups.realpower Current value of real power (Watts) 300
ups.realpower.nominal Nominal value of real power (Watts) 300
ups.beeper.status UPS beeper status (enabled, disabled

or muted)
enabled

ups.type UPS type (* opaque) offline
ups.watchdog.status UPS watchdog status (enabled or

disabled)
disabled

ups.start.auto UPS starts when mains is (re)applied yes
ups.start.battery Allow to start UPS from battery yes
ups.start.reboot UPS coldstarts from battery (enabled

or disabled)
yes

A.1.3 input: Incoming line/power information

Name Description Example value
input.voltage Input voltage 121.5
input.voltage.maximum Maximum incoming voltage seen 130
input.voltage.minimum Minimum incoming voltage seen 100
input.voltage.nominal Nominal input voltage 120
input.voltage.extended Extended input voltage range no
input.transfer.reason Reason for last transfer to battery (*

opaque)
T

input.transfer.low Low voltage transfer point 91
input.transfer.high High voltage transfer point 132
input.transfer.low.min smallest settable low voltage transfer

point
85

input.transfer.low.max greatest settable low voltage transfer
point

95

input.transfer.high.min smallest settable high voltage transfer
point

131

input.transfer.high.max greatest settable high voltage transfer
point

136

input.sensitivity Input power sensitivity H (high)
input.quality Input power quality (* opaque) FF
input.current Input current (A) 4.25
input.current.nominal Nominal input current (A) 5.0
input.frequency Input line frequency (Hz) 60.00
input.frequency.nominal Nominal input line frequency (Hz) 60
input.frequency.low Input line frequency low (Hz) 47
input.frequency.high Input line frequency high (Hz) 63
input.frequency.extended Extended input frequency range no
input.transfer.boost.low Low voltage boosting transfer point 190
input.transfer.boost.high High voltage boosting transfer point 210
input.transfer.trim.low Low voltage trimming transfer point 230
input.transfer.trim.high High voltage trimming transfer point 240

Network UPS Tools Developer Guide
50 / 54

A.1.4 output: Outgoing power/inverter information

Name Description Example value
output.voltage Output voltage (V) 120.9
output.voltage.nominal Nominal output voltage (V) 120
output.frequency Output frequency (Hz) 59.9
output.frequency.nominal Nominal output frequency (Hz) 60
output.current Output current (A) 4.25
output.current.nominal Nominal output current (A) 5.0

A.1.5 Three-phase additions

The additions for three-phase measurements would produce a very long table due to all the combinations that are possible, so
these additions are broken down to their base components.

Phase Count Determination

input.phases (3 for three-phase, absent or 1 for 1phase) output.phases (as for input.phases)

DOMAINs

Any input or output is considered a valid DOMAIN.

input (should really be called input.mains, but keep this for compat) input.bypass input.servicebypass

output (should really be called output.load, but keep this for compat) output.bypass output.inverter output.servicebypass

Specification (SPEC)

Voltage, current, frequency, etc are considered to be a specification of the measurement.

With this notation, the old 1phase naming scheme becomes DOMAIN.SPEC Example: input.current

CONTEXT

When in three-phase mode, we need some way to specify the target for most measurements in more detail. We call this the
CONTEXT.

With this notation, the naming scheme becomes DOMAIN.CONTEXT.SPEC when in three-phase mode. Example: input.L1.current

Valid CONTEXTs

L1-L2 \
L2-L3 \
L3-L1 for voltage measurements
L1-N /
L2-N /
L3-N /

L1 \
L2 for currrent and power measurements
L3 /
N - for current measurement

Valid SPECs

Valid with/without context (ie. per phase or aggregated/averaged)

Network UPS Tools Developer Guide
51 / 54

Name Description
current Current (A)
current.maximum Maximum seen current (A)
current.minimum Minimum seen current (A)
peakcurrent Peak current
voltage Voltage (V)
voltage.nominal Nominal voltage (V)
voltage.maximum Maximum seen voltage (V)
voltage.minimum Minimum seen voltage (V)
power Apparent power (VA)
power.maximum Maximum seen apparent power (VA)
power.minimum Maximum seen apparent power (VA)
power.percent Percentage of apparent power related to maximum load
power.maximum.percent Max seen percentage of apparent power
power.minimum.percent Min seen percentage of apparent power
realpower Real power (W)
powerfactor Power Factor (dimensionless value between 0.00 and 1.00)
crestfactor Crest Factor (dimensionless value greater or equal to 1)

Valid without context (ie. aggregation of all phases):

Name Description
frequency Frequency (Hz)
frequency.nominal Nominal frequency (Hz)

A.1.6 EXAMPLES

Partial Three phase - Three phase example:

input.phases: 3
input.frequency: 50.0
input.L1.current: 133.0
input.bypass.L1-L2.voltage: 398.3
output.phases: 3
output.L1.power: 35700
output.powerfactor: 0.82

Partial Three phase - One phase example:

input.phases: 3
input.L2.current: 48.2
input.N.current: 3.4
input.L3-L1.voltage: 405.4
input.frequency: 50.1
output.phases: 1
output.current: 244.2
output.voltage: 120
output.frequency.nominal: 60.0

A.1.7 battery: Any battery details

Name Description Example value
battery.charge Battery charge (percent) 100.0

Network UPS Tools Developer Guide
52 / 54

Name Description Example value
battery.charge.low Remaining battery level when UPS

switches to LB (percent)
20

battery.charge.restart Minimum battery level for UPS restart
after power-off

20

battery.charge.warning Battery level when UPS switches to
"Warning" state (percent)

50

battery.voltage Battery voltage (V) 24.84
battery.capacity Battery capacity (Ah) 7.2
battery.current Battery current (A) 1.19
battery.temperature Battery temperature (degrees C) 050.7
battery.voltage.nominal Nominal battery voltage (V) 024
battery.runtime Battery runtime (seconds) Remaining

battery runtime
1080

battery.runtime.low when UPS switches to LB (seconds) 180
battery.alarm.threshold Battery alarm threshold 0 (immediate)
battery.date Battery change date (opaque string) 11/14/00
battery.mfr.date Battery manufacturing date (opaque

string)
2005/04/02

battery.packs Number of battery packs 001
battery.packs.bad Number of bad battery packs 000
battery.type Battery chemistry (opaque (opaque

string)
PbAc

battery.protection Prevent deep discharge of battery yes
battery.energysave Switch off when running on battery

and no/low load
no

A.1.8 ambient: Conditions from external probe equipment

Name Description Example value
ambient.temperature Ambient temperature (degrees C) 25.40
ambient.temperature.alarm Temperature alarm (enabled/disabled) enabled
ambient.temperature.high Temperature threshold high (degrees

C)
40

ambient.temperature.low Temperature threshold low (degrees
C)

5

ambient.temperature.maximum Maximum temperature seen (degrees
C)

37.6

ambient.temperature.minimum Minimum temperature seen (degrees
C)

18.1

ambient.humidity Ambient relative humidity (percent) 038.8
ambient.humidity.alarm Relative humidity alarm

(enabled/disabled)
enabled

ambient.humidity.high Relative humidity threshold high
(percent)

80

ambient.humidity.low Relative humidity threshold high
(percent)

10

ambient.humidity.maximum Maximum relative humidity seen
(percent)

60

ambient.humidity.minimum Minimum relative humidity seen
(percent)

13

Network UPS Tools Developer Guide
53 / 54

A.1.9 outlet: Smart outlet management

Note
n stands for the outlet index. For more information, refer to the NUT outlets management and PDU notes chapter of the user
manual. A special case is "outlet.0" which is equivalent to "outlet", and represent the whole set of outlets of the device.

Name Description Example value
outlet.n.id Outlet system identifier (opaque

string)
1

outlet.n.desc Outlet description (opaque string) Main outlet
outlet.n.switch Outlet switch control (on/off) on
outlet.n.status Outlet switch status (on/off) on
outlet.n.switchable Outlet switch ability (yes/no) yes
outlet.n.autoswitch.charge.low Remaining battery level to power off

this outlet (percent)
80

outlet.n.delay.shutdown Interval to wait before shutting down
this outlet (seconds)

180

outlet.n.delay.start Interval to wait before restarting this
outlet (seconds)

120

outlet.n.current Current (A) 0.19
outlet.n.current.maximum Maximum seen current (A) 0.56
outlet.n.realpower Current value of real power (W) 28
outlet.n.voltage Voltage (V) 247.0
outlet.n.powerfactor Power Factor (dimensionless value

between 0 and 1)
0.85

outlet.n.crestfactor Crest Factor (dimensionless, equal to
or greater than 1)

1.41

outlet.n.power Apparent power (VA) 46

A.1.10 driver: Internal driver information

Name Description Example value
driver.name Driver name usbhid-ups
driver.version Driver version (NUT release) X.Y.Z
driver.version.internal Internal driver version (if tracked

separately)
1.23.45

driver.parameter.xxx Parameter xxx (ups.conf or cmdline
-x) setting

(varies)

driver.flag.xxx Flag xxx (ups.conf or cmdline -x)
status

enabled (or absent)

A.1.11 server: Internal server information

Name Description Example value
server.info Server information Network UPS Tools upsd vX.Y.Z -

http://www.networkupstools.org/
server.version Server version X.Y.Z

A.2 Instant commands

http://www.networkupstools.org/

Network UPS Tools Developer Guide
54 / 54

Name Description
load.off Turn off the load immediately
load.on Turn on the load immediately
shutdown.return Turn off the load possibly after a delay and return when

power is back
shutdown.stayoff Turn off the load possibly after a delay and remain off even

if power returns
shutdown.stop Stop a shutdown in progress
shutdown.reboot Shut down the load briefly while rebooting the UPS
shutdown.reboot.graceful After a delay, shut down the load briefly while rebooting

the UPS
test.panel.start Start testing the UPS panel
test.panel.stop Stop a UPS panel test
test.failure.start Start a simulated power failure
test.failure.stop Stop simulating a power failure
test.battery.start Start a battery test
test.battery.start.quick Start a "quick" battery test
test.battery.start.deep Start a "deep" battery test
test.battery.stop Stop the battery test
calibrate.start Start runtime calibration
calibrate.stop Stop runtime calibration
bypass.start Put the UPS in bypass mode
bypass.stop Take the UPS out of bypass mode
reset.input.minmax Reset minimum and maximum input voltage status
reset.watchdog Reset watchdog timer (forced reboot of load)
beeper.enable Enable UPS beeper/buzzer
beeper.disable Disable UPS beeper/buzzer
beeper.mute Temporarily mute UPS beeper/buzzer
beeper.toggle Toggle UPS beeper/buzzer

	Introduction
	NUT design document
	The layering
	How information gets around
	From the equipment
	From the driver
	From the server

	Instant commands
	Setting variables
	Example data path
	History

	Information for developers
	General stuff - common subdirectory
	String handling
	Error reporting
	Debugging information
	Memory allocation
	Config file parsing
	<time.h> vs. <sys/time.h>

	Device drivers - main.c
	Portability
	Coding style
	Indenting with tabs vs. spaces
	Line breaks

	Miscellaneous coding style tools
	Finishing touches
	Spaghetti
	Legacy code
	Memory leak checking
	Conclusion

	Submitting patches
	Patch cohesion
	The completion touch: manual pages and device entry in HCL
	Source code management
	Repository etiquette and quality assurance
	Distributed SCM systems
	Git and SVN
	Mercurial and SVN

	Creating a new driver to support another device
	Smart vs. Contact-closure
	Serial vs. USB vs. SNMP and more
	Overall concept
	Skeleton driver
	Essential structure
	upsdrv_info_t

	Essential functions
	upsdrv_initups
	upsdrv_initinfo
	upsdrv_updateinfo
	upsdrv_shutdown

	Data types
	Manipulating the data
	Adding variables
	Setting flags
	Status data

	UPS alarms
	Staleness control
	Serial port handling
	USB port handling
	Structure and macro
	Function

	Variable names
	Message passing support
	SET
	INSTCMD
	Notes
	Responses

	Enumerated types
	Writable strings
	Instant commands
	Delays and ser_* functions
	Canonical input mode processing
	Contact closure hardware information
	Definitions
	Bad levels
	Signals
	New genericups types
	Custom definitions

	How to make a new subdriver to support another USB/HID UPS
	Overall concept
	HID Usage Tree
	Writing a subdriver
	Shutting down the UPS

	Driver/server socket protocol
	Formatting
	Commands used by the drivers
	SETINFO
	DELINFO
	ADDENUM
	DELENUM
	SETAUX
	SETFLAGS
	ADDCMD
	DELCMD
	DUMPDONE
	PONG
	DATAOK
	DATASTALE

	Commands sent by the server
	PING
	INSTCMD
	SET
	DUMPALL

	Design notes
	Requests
	Access/Security
	Command limitations
	Re-establishing communications

	NUT configuration management with Augeas
	Introduction
	Requirements
	Augeas
	NUT lenses and modules for Augeas

	Create a test sandbox
	Start testing and using
	Shell
	Python
	Perl
	Test the conformity testing module

	Creating new client
	C / C++
	Client access library
	Configuration helpers

	Python
	Perl

	Network protocol information
	Old command removal notice
	Command reference
	GET
	NUMLOGINS
	UPSDESC
	VAR
	TYPE
	DESC
	CMDDESC

	LIST
	UPS
	VAR
	RW
	CMD
	ENUM

	SET
	INSTCMD
	LOGOUT
	LOGIN
	MASTER
	FSD
	PASSWORD
	USERNAME
	STARTTLS
	Other commands
	Error responses
	Future ideas
	Dense lists
	Command status
	Get collection

	NUT developers tools
	Device simulation
	Device recording

	NUT core development and maintenance
	NUT-specific autoconf macros
	NUT roadmap and ideas for future expansion
	Roadmap
	2.6
	2.8
	3.0

	Non-network "upsmon"
	Completely unprivileged upsmon
	Chrooted upsmon
	Monitor program with interpreted language
	Sandbox

	NUT command and variable naming scheme
	Variables
	device: General unit information
	ups: General unit information
	input: Incoming line/power information
	output: Outgoing power/inverter information
	Three-phase additions
	Phase Count Determination
	DOMAINs
	Specification (SPEC)
	CONTEXT
	Valid CONTEXTs
	Valid SPECs

	EXAMPLES
	battery: Any battery details
	ambient: Conditions from external probe equipment
	outlet: Smart outlet management
	driver: Internal driver information
	server: Internal server information

	Instant commands

